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Abstract

Deep Learning models solving supervised NLP problems benefit from the
use of pretrained language models, as shown recently (Howard and Ruder,
2018; Radford et al., 2018). In this work, we investigate whether the do-
main shift incurred when transferring the language models on to the target
task can be actively bridged. To that end, we incorporate domain adver-
sarial training (Ganin et al., 2016) in this context. We, then evaluate this
augmented training algorithm in a variety of transfer learning schemes, over
the movie review classification task. Through our experiments we find that
domain adversarial training can be beneficial in low resource scenarios, but
is redundant on tasks with ample training data.

Keywords: Transfer Learning, Domain Adversarial Training, Pretrained
Language Models, Natural Language Processing



Chapter 1

Introduction

Understanding and interpreting natural language has been a central tenet of
intelligent systems, more so as human interactions are increasingly both con-
veyed and consumed textually. While the goal of human-esque understanding
and interpretation of language has been generally elusive, progress in the field
comes in the form of better solutions for natural language processing (NLP)
problems which involve various degrees of language understanding, such as
machine translation (Bojar et al., 2018), reading comprehension (Choi et al.,
2018; Reddy et al., 2018; Nguyen et al., 2016; Rajpurkar et al., 2018), linked
data question answering (Trivedi et al., 2017; Berant et al., 2013), text clas-
sification (Zhang et al., 2015; Maas et al., 2011), fact verification (Thorne
et al., 2018), text simplification (Zhu et al., 2010), summarization (Völske
et al., 2017) etc.1

Over the years, the performance of deep learning models have been in-
creasingly improving over a wide variety of these problems, and in some cases
reaching the inter-annotator agreement2 levels (Devlin et al., 2018). This in-
crease, while often incrementally brought about by the means of increased
training data, deeper models (Schwenk et al., 2017; Cer et al., 2018), better
model architectures (Maheshwari et al., 2018; Yu et al., 2018) or efficient
hyperparameter search (Eggensperger et al., 2015; Snoek et al., 2012), is
sometimes caused by notable innovations3 such as the use of attention in
sequence-to-sequence networks (Bahdanau et al., 2015; Luong et al., 2015),
generative adversarial networks for text (Subramanian et al., 2017), cross

1For an excellent repository of such tasks, and state of the art approaches to solve
them, visit http://nlpprogress.com/.

2The terminology inspired from this thread of tweets - https://twitter.com/yoavgo/
status/1111179424215502848

3We use the word here very liberally, as many of the following innovations heavily draw
upon, or simply retry previously proposed techniques with incremental modifications.

1

http://nlpprogress.com/
https://twitter.com/yoavgo/status/1111179424215502848
https://twitter.com/yoavgo/status/1111179424215502848


attention between input sequences for tasks involving comparison of input
sequences (Parikh et al., 2016), and more recently, transformers based en-
coders (Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2019).

However, these approaches have a shortcoming, namely, that the model
can only extract domain understanding from the given dataset while training
to solve a particular problem. For instance, when training to classify movie
reviews (in English language) as positive or negative, the model doesn’t lever-
age countless other sources, training on which might imbue the model with
better task/domain-invariant understanding of the language potentially im-
proving its performance while classifying reviews. This inability causes no-
ticeable hindrances when a particular dataset has inadequate number of ex-
amples, barring the model to ever reach satisfactory accuracy despite solving
a simple problem.

The field of transfer learning aims to provide training mechanisms, model
architectures, and other techniques to overcome the aforementioned short-
comings. Transfer learning (TL) over a domain Di and task Tj can be loosely
defined as leveraging data, or models trained on data outside the current do-
main or task, while training over Tj (Pan and Yang, 2010). The use of these
methods has been demonstrated to enable faster model convergence (Howard
and Ruder, 2018), better task performance in data rich domains (Devlin
et al., 2018), and has enabled the use of deep learning techniques for prob-
lems in niche tasks and domains, with limited training examples (Nguyen and
Chiang, 2017; Cohn et al., 2017; Ruder, 2019, Ch. 5). The impact of these
approaches has been seen in the computer vision domain more profoundly
where the use of models trained over largescale datasets for downstream tasks
such as object detection (Girshick et al., 2014), semantic segmentation (Zhao
et al., 2017) and human pose estimation (Cao et al., 2017) is the norm, rather
than exception (Mahajan et al., 2018).

The counterpart of these approaches for NLP would be the use of pre-
trained language models for multiple downstream tasks (Ruder, 2018). Lan-
guage models estimate the likelihood of a sequence of words, often computed
as a product of conditional probabilities characterized by the following equa-
tion:

P (w0:T ) = P (w0)
T∏
t=1

P (wt|w0:t−1) (1.1)

where wt is the tth word token in a sequence of T such tokens. Recurrent
neural language models estimate these conditionals often using an encoder-
generator architecture where the encoder outputs fixed length vector repre-
senting the input words in a high dimensional space which is then used by
the generator to output the conditional probabilities.
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Using a pretrained encoder (aforementioned) in task specific neural archi-
tectures can induce desirable understanding of the language pivotal to boost
model performance, and enable low resource training, akin to the advan-
tages mentioned above. Some of the prevalent example of these techniques
include the use of pretrained word embeddings (Mikolov et al., 2013; Pen-
nington et al., 2014; Bojanowski et al., 2017), which are found in a majority
of neural approaches for NLP (Li and Yang, 2018), albeit only as a part of
the encoder. (Dai and Le, 2015) first demonstrated that using the entire
encoder of a language model as an initialization for a task specific network
can decrease the generalisation gap. However, their language model was
pretrained on task-specific text which reduces the appeal of their technique
for niche domains and small datasets. Other approaches (Mou et al., 2016)
have demonstrated similar results using language models trained on generic
(task invariant) text although with limited improvements. Further, (Howard
and Ruder, 2018) demonstrate faster model convergence, and overall increase
in performance by a combination of both task-invariant and task-dependent
language models trained in succession. More recently, (Vaswani et al., 2017)
propose a non-recurrent encoder, namely transformer, which uses a complex
combination of multi-head self attention for sequence transduction. Trans-
formers, when used by (Radford et al., 2018; Devlin et al., 2018; Radford
et al., 2019) in quick succession, in the setting of our interest, namely by
training as a general language model whose encoder is used for downstream
tasks, significantly outperform the existing state of the art methods.

Motivated by the potential benefits of these family of sequential transfer
learning (STL) approaches, we attempt to utilise auxiliary learning methods
to further minimise the loss of information when transferring the encoder
form the language model to the target task. More specifically, we intend
to explore whether enforcing an invariance between the source and target
domain, by the means of domain adversarial training (Ganin et al., 2016) be
beneficial for the process.

Domain adversarial training, as proposed in (Ganin et al., 2016), is an
augmentation to a neural network, which adversarially trains it to learn rep-
resentations of source and target data which are indistinguishable, or are
domain invariant. In a scenario where the source task is language model-
ing over general purpose text corpus, and the target task is any supervised
NLP task, achieving domain invariance is akin to bridging the domain shift
between the two. If it can be achieved without losing information needed to
make predictions for the target task, we hypothesise that it may enable the
model to generalise better over the target task, thereby further improving
the aforementioned STL (pretrain-finetune) process.

To that end, we investigate the use of pre-trained recurrent language
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model for the purposes of sentiment classification, and the way domain ad-
versarial training affects the process. We pre-train our language models on
a task invariant text corpus - Wikitext103 (Merity et al., 2017), and use two
commonly used sentiment classification datasets (Maas et al., 2011), (Pang
and Lee, 2004). Further, we also perform our experiments in a multi-task
setting wherein our target task is solving both of the aforementioned datasets
simultaneously, in a comprehensive combination of STL schemes.

Our experiments show that domain adversarial training effectively reg-
ularises the model which can decrease the error in some cases, depending
upon the specific STL scheme and the amount of data on the target task.
However, in some other, specially wherein there is ample labeled examples of
the target task, we find that adding domain adversarial aspect to the training
negatively affects the model performance. This, alongwith the results of fur-
ther analysis suggests that while domain adversarial training is an effective
form of regularisation, barring low resource tasks, it provides little tangible
benefits in the sequential transfer learning scheme of our interest.

1.1 Thesis Structure

The rest of the thesis is structured as follows. In Chapter 2, we introduce
numerous concepts pertinent to our work including natural language pro-
cessing, deep learning, language modeling and transfer learning. Chapter 3
details the premise of our work, namely the use of pretrained language models
for downstream NLP tasks. Chapter 4 details primarily the work of (Ganin
et al., 2016) introducing domain adversarial training, and theoretical results
on which it is built. We describe our experiments and their results in Chap-
ter 5, and conclude our work in the last chapter, namely Chapter 6.

4



Chapter 2

Background

Before discussing our work, and the context surrounding it, we describe some
concepts necessary for an in-depth understanding of our work. In the fol-
lowing sections, we shall provide an overview of natural language processing,
language modeling and neural approaches to both, before moving on to out-
line the field of transfer learning in the context of our work.

2.1 Natural Language Processing

The field of natural language processing (NLP) aims to build solutions to
problems involving varying degrees of understanding of human language. A
problem in the context of our work, can be thought of as a task specific
labeling scheme applied over samples from a domain, which we expect a par-
ticular NLP solution to predict. We begin the discussion of NLP approaches
by borrowing the definition of domains and tasks from (Ruder, 2019), which
offer a particular perspective suitable to this work.

As mentioned in (Ruder, 2019), a domain D consists of a feature space X ,
and a marginal probability distribution pdata(X) where X = {x1 . . . xn} ∈ X .
For instance, in the case of sentiment classification over movie reviews, the
feature space X ⊆W|V|×L where V would be an arbitrary set of words from
the reviews; L would be the maximum length of any review; xi, the ith

review; and X is a set of reviews constituting an unlabeled dataset. Given
a domain D = {X , pdata(X)}; a label space Y , a prior distribution pdata(Y )
where Y = {yi . . . yn}, and a conditional distribution pdata(Y |X) constitute
a task T . In our example, Y is the set of all possible labels i.e. {pos, neg}.

Solutions for such tasks, generally aim to estimate the conditional dis-
tribution pdata(Y |X) by learning from labeled datasets consisting of pairs
xi ∈ X and yi ∈ Y (supervised learning); or the data distribution pdata(X)
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by learning from unlabeled datasets consisting of samples xi ∈ X (unsu-
pervised learning). Thus, in practice, we do not have access to the real
distribution pdata, but only an approximation p̂data denoting the datasets at
hand.

Some of the earliest forays in the field which attempt to solve these tasks
were symbolic in nature, premised on the perspective on language under-
standing as outlined in (Chomsky, 1957). These approaches aimed to create
an exhaustive set of rules to controllably interpret the semantic structure of
language, represented as expressions of a formal grammar following a finite
set of compositional rules, and perform the necessary prediction based on
it (Shank and Tesler, 1969; Dasgupta et al., 2018). Such systems are prob-
lem specific, their generalization constrained by the exhaustiveness of the
rules meticulously set by domain experts.

In the past few decades, statistical approaches for understanding language
and solving related tasks emerged, premised on the distributional hypothe-
sis (Harris, 1954), which is eloquently put by (Firth, 1957) as “You shall
know a word by the company it keeps”. Instead of creating rules and deci-
sion surfaces manually, domain experts engineer a set of task-specific features
and their corresponding extraction mechanisms which are used to represent
the inputs. These representations could then be used by mathematical mod-
els (Cortes and Vapnik, 1995; Freund and Schapire, 1997) to learn the needed
decision surfaces automatically and map the input (word, or word sequences)
to output (labels or word sequences) thereby channeling the involvement of
domain experts from rule creation to feature engineering. While relatively
less brittle in nature, these approaches nevertheless involved significant ef-
forts from domain experts in designing features relevant for the task and
domain.

The field of NLP was further streamlined with the rise of deep learning ap-
proaches. Deep learning, a particular family of machine learning approaches,
offer overparameterised models which are composed of layers of nonlinear
functions, and are able to fit complex distributions efficiently. This enables
the models to learn a latent set of features automatically given inputs and
make necessary predictions, further transposing the task of feature engineer-
ing to that of model architecture selection, and hyperparameter tweaking.

2.2 Deep Learning

In this section we provide a brief introduction to the foundations of deep
learning, skipping over, or summarising a vast amount of literature rele-
vant to this work. Large proportions of this section contain material from
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Deep Learning (Goodfellow et al., 2016), which we modify for notation’s or
brevity’s sake. We reserve the focus of this section primarily towards dis-
criminative models i.e. models which learn to predict an instance from the
label space, when given instances from the feature space (roughly, supervised
learning1.).

Deep learning models, or neural networks are composite, parameterised
functions which can be trained to output ŷi ' yi ∈ Y when given xi ∈ X;
or generate samples x̂i ' xi ∈ X. From a theoretical perspective, they
can be seen as a family of probability distributions pmodel(, θ), indexed by
θ, which maps any configurations x to a real number estimating the true
probability pdata(y|x) (discriminative models), or in the case of generating
samples, pdata(x) (generative models). A deep learning model can then be
seen as an arbitrary function f parameterized with θ which works as follows:

ŷi = f(xi; θ) (2.1)

pmodel(yi|xi; θ) = ŷi (2.2)

Here, ŷi is the output of the model given xi as the input. We would want
a value of the index θ which aligns pmodel(, θ) as close as possible to pdata.
That is, for an input vector xi, we would want the model’s output vector
ŷi be a distribution over all possible labels, which peaks at yi, where (xi, yi)
are samples generated from pdata. A common way to do so uses the principle
of (conditional) maximum likelihood estimation or conditional MLE, defined
as:

θML = argmax
θ

pmodel(Y |X; θ) (2.3)

which can be further resolved to:

θML = argmin
θ

Ex,y∼p̂data − log pmodel(y|x; θ) (2.4)

This equation suggests that we can find an optimum set of parameters for
our model by treating it as an optimisation problem. The loss function (ob-
jective) of this optimisation problem would be negative log likelihood (NLL)
computed over samples (xi, yi) sampled i.i.d. from p̂data

2, guided by the MLE
principle. Another perspective on (conditional) MLE i.e. maximizing the
likelihood is the same as minimizing the KL divergence3, yields cross entropy

1The distinction between discriminative and generative models, or, supervised and
unsupervised learning is fuzzy (Goodfellow et al., 2016, p. 106)

2Note that in Eqn. 2.4, p̂data represents the empirical distribution based on sampled
data at hand, since we have no direct access to the true data generating distribution pdata.

3http://benlansdell.github.io/statistics/likelihood/

7
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between the training data and the model distribution as the loss function.
We can in fact replace NLL with an arbitrary loss function L(f(xi; θ), yi),
which takes the model output over an instance, real label of the instance,
and model parameters as the input, and returns a score representative of the
prediction errors of the model. Eqn 2.4 can then be generalised as:

θ∗ = argmin
θ

Ex,y∼p̂dataL(f(x; θ),y) (2.5)

= argmin
θ

1

m

m∑
i=1

L(f(xi; θ), yi) (2.6)

where m is the number of labeled samples in a given dataset.
The actual surface of the loss function, in practice is very complex, and

lies in a high dimensional space for most deep learning model (number of
dimensions corresponding to number of parameters in a model, which can be
as high as 350 million (Devlin et al., 2018)). This renders grid search or ran-
dom search based solutions computationally intractable. The intractability
is further compounded upon by the fact that the actual value of the loss sur-
face at any point would require computing the loss function over the entire
dataset (which are quite large, themselves). We thus use gradient descent
to optimize the objective function - L. Recall that the gradient of a function
f(x) is the vector containing all the partial derivatives, denoted by ∇xf(x),
and critical points are points where every element of the gradient is equal to
zero. To minimize L, we would like to find the direction in which L decreases
the fastest, at any point in the parameter space θ, which is to say

min
u,uTu=1

uT∇θL(f(x; θ),y) (2.7)

min
u,uTu=1

||u||2||∇θL(f(x; θ),y)||2cosφ (2.8)

where u is a unit vector representing the direction (in the parameter space)
in which we wish to move, and φ is the angle between u and the gradient.
Since the magnitude of any unit vector (||u||2) is 1, the gradient term isn’t
influenced by u, Eqn. 2.8 can be resolved to minucosφ. Thus, moving in
opposite direction of ∇θL minimizes L the most. This leads to the following
update step:

θ
′
= θ − η∇θL (2.9)

where, η is the learning rate, determining the magnitude of the update.
This update step, if computed indefinitely (or more practically, ample number
of times) will converge the model to a local minima (Boyd and Vandenberghe,
2004, Chapter 9.3.1). Note that convergence to a local minima here doesn’t
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imply that the loss function is at its lowest value (i.e. at a global minima),
or even that its reasonably low, but only that the magnitude of the gradients
of the loss functions is zero or close to zero.

While theoretically appealing, given the consistent nature of MLE, and
the convergence property of gradient descent algorithm, this optimisation
scheme has some practical problems. First, the loss surface of any neu-
ral network, even a single neuron has very many local minima and saddle
point (Auer et al., 1995). Models trained based on (vanilla) gradient de-
scent can get stuck (converge) on either of them. Further, a more practical
problem is the fact that computing the loss over the entire dataset (required
for every step) is computationally expensive, more so as complex tasks, and
larger models require larger datasets to converge.

A slightly changed learning scheme - stochastic gradient descent (SGD)
is thus more commonly used to train neural models. Instead of computing
the loss over the entire dataset, training under SGD involves sampling a
mini-batch of examples B = x1, . . . xm′ drawn uniformly from the training
set. This is done treating the gradient as an expectation, which can be ap-
proximately estimated using a small set of samples. Sampling mini batches
from the dataset for each update step ensures a much reduced training time.
Further, this stochastic nature introduces variations to the loss function and
consequentially the gradients, reducing convergence time and possibly con-
verging to a better minima (i.e. with lower loss).

This concludes, in the simplest form, the fundamental theory involving
the training of deep learning models. While there’s a wide variety of existing
literature on the topic (Choromanska et al., 2015; Ioffe and Szegedy, 2015;
Kingma and Ba, 2015; Loshchilov and Hutter, 2017; Bengio et al., 2009),
here we outlined the simplest method in which this is accomplished, and
refer interested readers to (Goodfellow et al., 2016, Chapter 8). We can now
deconstruct a deep learning algorithm into (i) a labeled dataset denoted by
p̂data, (ii) a loss function L(f(xi; θ), yi, θ), (iii) an optimisation procedure (e.g.
stochastic gradient descent), and (iv) a model. In the rest of this section, we
discuss some common model components and architectures relevant to this
work.

2.2.1 Deep Learning Models

In this section we describe different deep learning models or neural networks
that are used, and can be trained in the aforementioned manner. We begin
the discussion by giving an intuitive description of what properties would we
want these models to have, and then continue with its simplest variant.

Given our objective, that of modeling p̂data, and the aforementioned
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method of training our models, namely, by gradient descent based optimisa-
tion, we would want to use functions which (i) are parameterised, and recep-
tive to change in parameters, (ii) are able to learn complex representations of
input data by learning simpler representations and stacking (or combining)
them, and (iii) are non linear, since multiple linear transformations when
combined can be represented by one linear transformation. Finally, being
able to train them using gradient descent requires that these functions must
be (iv) differentiable.

Consider the following linear transformation:

ŷ = Wx + b (2.10)

where x ∈ RN ,W ∈ RN×M and ŷ, b ∈ RM . Treating W and b as parameters,
we can represent it with the following function:

flinear(x; θ) = Wθx + bθ (2.11)

where flinear : RN 7→ RM is a parameterised function which can compute
an M -dimensional vector given N -dimensional vectors as inputs. Known in
existing literature as a linear regressor, this function can be trained to
weigh the N different features of input differently and produce an M dimen-
sional vector. For classification over an M dimensional label space Y , we
can interpret flinear’s output as a score over the M classes, and can choose
the class with the highest score as the model’s prediction. We can alterna-
tively normalise, and interpret its output (ŷ = flinear(x; θ)) as a distribution
pmodel(y|x).

A linear regressor thus satisfies most of our aforementioned requirements
except for non-linearity. To imbue non-linearity, we can simply augment ŷ
s.t. ŷ = g ◦ f , where g is a non linear function, known as the activa-
tion function. The most common activation function, namely the sigmoid
function (σ(z)), defined as

σ(z) =
1

1 + e−z
(2.12)

is a bounded, differentiable and monotonic function σ : R 7→ (0, 1). Its gen-
eralisation to multi-dimensional domain and range is known as the softmax
function.

softmax(z)i =
ezi∑M
j=1 e

zj
(2.13)

Softmax is most often used as the activation function over the final outputs
of a model (and rarely anywhere else), given that it can interpret an n-
dimensional vector as a probability distribution over n classes.
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Other common choices of activation functions include the hyperbolic tan-
gent function tanh : R 7→ (−1, 1), and the more commonly used Rectified
Linear Unit g(z) = max{0, z} or (ReLU)4.

This constitutes the simplest building block of neural networks, namely
- a feed forward layer, composed of a linear function flinear(x; θ), and
an activation function. We can trivially stack these layers to constitute
a complex non-linear parameterised function, which can be trained to fit
a distribution. From a bottom-up perspective, all but the final layers are
called hidden layers, and layer whose outputs constitute the model’s output
is called output layer. The output of one layer acts as the input to the next,
and the process in which these inputs are passed across layers is called forward
propagation. Correspondingly, during learning, we compute the gradients of
the model one layer at a time. Using the chain rule of calculus, only the
gradients of the layer directly above the current one affects its gradients,
making the process of computing the gradients computationally efficient.
The process in which these gradients are computed layer by layer (from top
to bottom) is called backpropagation. For example, a two layered feed forward
network5 fmlp with two hidden layers can be characterised as follows:

h1 = g1(W1 x + ba1)

h2 = g2(W2 h1 + b2)

ŷ = Wout h2 + b2)

pmodel(y|x) = softmax(ŷ) (2.14)

We discuss some commonly used layers in the next subsection.

2.2.2 Layers in a Deep Learning Model

While generic in nature, feedforward layers are inefficient in terms of parame-
ters used. For instance, when making predictions over sequential inputs (of l
length) belonging to an n dimensional feature space, and making predictions
over an m dimensional label space, a single layered feed forward network
would contain l × n ×m + m parameters. In practice, we rarely use single
layered networks and input spaces contain hundreds of dimensions resulting
in tens of thousands of parameters in the simplest cases.

4While ReLU is non-differentiable at z = 0, in practice the gradients of the models
never reach 0, and thus “it is acceptable for the minima of the cost function to correspond
to points with undefined gradient” (Goodfellow et al., 2016, Chapter 6.3).

5A feedforward network is a neural network composed of feed forward layers, and is
also commonly referred to as a multi-layer perceptron or MLP
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Further, these models are agnostic to structure of the inputs. That is to
say that they would treat a sequence of 5 inputs having 125 dimensions each,
same as they would consider a single unstructured input of 625 dimensions,
or an image (matrix) of 25 × 25 greyscale pixels. This is disadvantegous
because structural information can be pivotal when making predictions. For
instance, while segmenting images into binary classes, it is more likely that
a pixels adjacent to an already labeled pixel share the same class, than not.

Owing to these reasons, common neural models contain layers which can
actively take advantage of input structures.

Recurrent Layers

Recurrent neural networks or RNNs (Rumelhart et al., 1988) are a family of
neural networks which can harness sequential nature of data 〈x(1), . . .x(T )〉 ∈
X . In these cases, inputs at different time steps (x(t)) belong to same latent
space. In the case of text classification, for instance, we expect them to each
belong to a shared space of possible words.

Premised on this, recurrent models share parameters when processing
inputs at different time steps. Seen from another perspective, they process
the inputs repeatedly - applying the same parameterised transformation over
each vector (x(t)), one time step at a time. This enables the model to gener-
alise over sequences of multiple different lengths.

Further, to be able to make inferences across different positions in time,
recurrent models pass a fixed length vector across time steps, often referred
to as the hidden state, or the memory which gets updated at each time step.
We can define them using the following equation:

h(t) = grnn(Wx(t) + Uh(t−1) + b) (2.15)

where g is an activation function (e.g. tanh), x(t) is the tth input in the
sequence, h(t−1) is the hidden state corresponding to the t− 1th input. The
weight matrices W, U and the bias b parameterise this layer, and are shared
across time steps.

One straight-forward limitation of these models is directionality. The
flow of information in Eqn. 2.15 is left-to-right which might be sub-optimal
when making decisions involving elements across the sequences, or right-to-
left scripts (e.g. Hebrew sentences). A bidirectional RNN (or BiRNN)
aims to partially rectify these limitations by using an RTL (right to left)
RNN alongwith the conventional LTR (left to right) one, and combining
their hidden states at each time to produce the final summary vector, as
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follows:

h
(t)
l = grnn(Wlx

(t) + Ulh
(t−1)
l + bl)

h(t)
r = g

′

rnn(Wrx
(t) + Urh

(t+1)
r + br)

h(t) = [h
(t)
l ,h

(t)
r ] (2.16)

where Wl,Wr,Ul,Ur, bl, br are parameters of the layer and shared across
time steps.

Multiple augmentations have been proposed to rectify other shortcomings
of these models such as vanishing or exploding gradients, information loss
across long time steps (Hochreiter, 1991; Bengio et al., 1993, 1994a) etc. We
discuss them briefly, below.

Long Short-Term Memory (LSTM) Layers

Hochreiter and Schmidhuber (1997) proposed a Long Short-Term Memory
(LSTM) cell, an augmented recurrent cell, which can explicitly retain infor-
mation over longer periods of time. An LSTM cell transfers not just the last
layer’s hidden output h(t) across time steps, but an internal cell state c(t) on
which the cell’s hidden outputs depend. Further, using, removing and adding
information to the cells is managed by the means of output, forget, and in-
put gates. For brevity’s sake, we omit an in depth explanation of each gate,
and refer interested readers to an excellent explanation of the topic - (Olah,
2015), and directly mention the equations which characterise an LSTM cell:

f(t) = gg(Wfx
(t) + Ufh

(t−1) + bf )

i(t) = gg(Wix
(t) + Uih

(t−1) + bi)

o(t) = gg(Wox
(t) + Uoh

(t) + bo)

c(t) = f(t) ◦ c(t−1) + i(t) ◦ gc(Wcx
(t) + Uch

(t−1) + bc) (2.17)

h(t) = o(t) ◦ gh(c(t)) (2.18)

where f(t), i(t) and o(t) represent the different gates which dictate the edit
operations on the cell state c(t) as depicted in Eqn. 2.17. Further, gg are
sigmoid activations, gc, gh are hyperbolic tangent activations, ◦ represents
the Hadamard product, and W∗,U∗, and b∗ are parameters, invariant to time
steps. Akin to the RNN layer, a layer of LSTM can be trivially modified for
bidirectionality.

Different variations of these recurrent units have been proposed, includ-
ing Gated Recurrent Unit (GRU) (Cho et al., 2014), Minimal Gated Unit
(MGU) (Zhou et al., 2016).
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Convolutional Layers

Convolutional Neural Networks (CNNs) proposed in (LeCun et al., 1989) are
neural layers specializing in processing data with grid like topology such as
images (2D grid), or even sequential data which can be thought of as a 1D
grid. As the name suggests, these layers involve the convolutional operation
using parameterised multi-dimensional kernels. These kernels are used to
compute a weighted average over subset of input values to produce one value
of the output representation: hconvj = Wkxj−m/2:j+m/2 where Wk is a kernel of
m dimensions, and x is a 1D input of n. By sliding this kernel over the length
of x, we can compute an output representations of n − m + 1 dimensions.
This operation of sliding the kernel over an input is called the convolution
operation, and can be generalised for multidimensional inputs and kernels.

When an input passes through a feed-forward layer, each output value
m is influenced by each input value n correspondingly weighted by Wm,n, a
scalar parameter. When processing structured inputs, this is disadvantegous
because of the increased number of parameters, as well as tasking the model
to be spatially aware. Convolutional layers instead have sparse interactions
as the inputs are convolved with kernels that are significantly smaller in size.
Further, given that we slide the same kernel across the inputs, as opposed
to having different parameters corresponding to each term in the output
vector, we in effect share parameters, similar to Sec. 2.2.2. This invariance
helps to train the kernels to “find” a specific feature over the inputs, for
instance an edge in an image, or in less abstract layers a geometric shape, or
a written character. In practice, we have multiple kernels (with independent
parameters in each) produce multiple output representations of the input
corresponding to the presence of feature each kernel is trying to find, giving
the kernel their other commonly used name - a feature map. Note that we
use the term feature not to denote human-interpretable features but rather
a latent high dimensional representation in a space with little co-relation to
interpretable concepts.

These multiple outputs are then passed through activation functions, and
finally through a pooling layer which “replace the output of the net at a
certain location with a summary statistic of the nearby outputs” (Goodfel-
low et al., 2016, Chapter 9.3), making the outputs become more invariant
to slight variations in the input. A convolution layer, thus, is composed of
(i) a convolution operation, (ii) an activation, and (iii) a pooling function.
Models composed primarily of convolution layes have shown tremendous per-
formance over multiple tasks, primarily, but not restricted to the computer
vision domain (Zhao et al., 2017; Cao et al., 2017; Girshick et al., 2014).
More recently, their use for NLP tasks has been explored, and has shown
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promising results (Kim, 2014; Mou et al., 2015).

Time Distributed Feed Forward Layers

A time distributed feed forward layer is feed forward layer applied on one
element of the input sequence at a time. Another perspective on the matter
would be to think of them as a recurrent layer without a hidden state. We
can describe them simply by the following equations:

ŷ(t) = g(Wx(t) + t) (2.19)

which we can alternatively represent as:

ŷ(t) = g(fmlp(x(t); θ)) (2.20)

In practice, we use this to classify tokens (as explained below), and more
commonly to embed input word tokens into a low dimensional vector space,
typically as the first layer in models working with natural language. The
latter, known as the embedding layer uses no activation function. We
discuss the use and the process of training embedding layer at length in the
next section - Sec. 2.3.2.

This concludes a quick summary of neural layers which hold relevance
to our work, enabling us to finally discuss the ways in which they can be
combined to form models specific to a given task. While extremely broad
in nature, we focus the discussion to the use of recurrent layers, and solving
supervised NLP tasks.

2.2.3 Deep Learning Architectures for NLP Tasks

Based on the domainD(X , pdata(X)), and the task T (Y , pdata(Y ), pdata(Y |X)),
we can broadly classify tasks which involve some degree of textual under-
standing into four categories mentioned in this subsection.

Remark. We shall use frnn as an abstract function which may be composed
of multiple recurrent layers, with or without bidirectionality, have any acti-
vation function, and may use any recurrent cell including RNNs, LSTMs etc.
Similarly, fmlp may be used to denote one feedforward layer, or a combination
of multiple such layers, with any activation function on each.

Sequence Level Classification

Given a sequence of word tokens xi = x
(1)
i . . . x

(T )
i , we wish to classify the

sequence xi into one of n classes. Common examples of such tasks include
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sentiment classification, topic classification etc. In these cases, the feature
space X (from which input sequences are sampled) can be represented by VL

where V is the set of all unique tokens, also known as the vocabulary, and L
represents the maximum length of sequences. The label space Y is a much
smaller space of possible classes, depending on the task.

When making predictions about sequences, we would want to produce a
comprehensive summary of factors contributing to the summary, and learn
to make predictions based on the summary. This is accomplished using a
two step network wherein the first sub-network (or layers) encodes input
text as a fixed-length vector in a latent representation space. Thereafter, a
classifier is tasked with using the vector (representing the input sequence)
and create a distribution over a label space. We cumulatively refer to the
layers which create an encoded representation of the text as encoder. In
practice the encoder consists of the aforementioned embedding layer (or a
time distributed feed forward layer), and a recurrent layer. The following
equations provide an abstract summary of the same:

x
(t)
emb = femb(x(t); θemb) (2.21)

h(t)
enc = frnn(x

(t)
emb; θemb) (2.22)

ŷ = fmlp(h(T )
enc; θmlp) (2.23)

where femb and frnn collectively constitute the encoder, and fmlp is called the
classifier which takes the final hidden state of the RNN as the sequence’s
summary. A common variation of this network uses a more comprehensive
summary of the encoded representations by concatenating the mean and max
pooled (across time) representations of the hidden states h(1)

enc . . .h
(T )
enc along

with the final state.

Token Level Classification

Token level classification is a variation of the aforementioned task wherein
instead of making one prediction for the entire sequence, we wish to classify
each element of a sequence in one of n classes. Common examples of which
include Part of Speech tagging, named entity recognition etc.

To solve this task, we modify the network above by using a time dis-
tributed feed forward layer (See Sec. 2.2.2), as opposed to a regular MLP.
We can thus modify Eqn. 2.23 as follows:

ŷ(t) = fmlp(h(t)
enc; θmlp) (2.24)

to solve the task. This modification allows us to make prediction correspond-
ing to each hidden state (representing a summary of the sequence up-to that
point).
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Interestingly, by keeping the label space same as the feature space, we
can train the model to predict the next word given the sequence so far. This
task is referred to as language modeling, and as we discuss in the next section
(Sec. 2.3) can impart a deeper understanding of the given language.

The neural architecture defined here, and above (Equations (2.21) to (2.23))
are collectively referred to as an encoder-classifier network.

Sequence Generation

Instead of classifying a given sequence into one of n classes, some task might
involve generating text given a particular input. Some examples include
generating captions given an image, or generating sentences given a particular
keyword.

Neural approaches to solve this task include the concept of a conditional
recurrent layer. So far we’ve seen a recurrent layer as a function which
encodes an input sequence’s elements by the means of the cell state. Instead,
we can think of it as a generative model which generates a hidden state vec-
tor conditioned on the input. Recall that by the means of a time distributed
feed forward layer, we can further transform the hidden state vector to a dis-
tribution over the vocabulary. We can then extend this notion of conditional
generation, and train the RNN to generate a sequence of words conditioned
not only on a given input sequence (language modeling), but an arbitrary
context vector.

The task of sequence generation then boils down to creating a fixed length
context vector given an input from an arbitrary feature space, and then using
it to condition a recurrent layer to generate the desired sequence. The latter
(combination of an RNN and a time distributed feed forward layer) is referred
to as the decoder of the model. As above, we refer to the part of the model
which encodes the given input to a fixed length context vector as the encoder.
The resulting model can be described by the following equations:

h = fenc(x; θenc) (2.25)

s(t) = frnn(h, s(t−1); θrnn) (2.26)

ŷ = fmlp(s(t); θmlp) (2.27)

where fenc is an arbitrary encoder, and frnn is conditioned on the encoder’s
output h.

Sequence Transduction

Tasks which fall under this classification involve trying to predict a sequence
given another. Typical examples include machine translation, wherein we
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wish for the model to generate a sequence having the same semantic meaning,
but in a different language, or paraphrasing wherein we wish for the model
to rephrase one or many sentence keeping their semantic meaning intact.

To solve this, we can modify the network above to create a summary of a
sequence of text. That is to say, that we can replace fenc in Eqn. 2.25 with a
combination of an embedding layer and a recurrent layer (Equations (2.21)
to (2.22)). Here, we can use both, the last hidden state of the encoding RNN,
or its pooled summary (across time) as the context vector. These models are
called encoder-decoder, or sequence-to-sequence networks.

Remark. This classification excludes tasks like textual entailment, read-
ing comprehension, knowledge graph question answering, semantic parsing
etc. However, some of these tasks can be treated as a special case of the
aforementioned. For instance, textual entailment, where we wish to predict
whether a sentence is logically followed by another can be modeled as a case
of sequence level classification, where the two sentences are concatenated and
passed to the model which is tasked to make a binary prediction regarding
the entailment.

2.3 Language Modeling

While briefly mentioned in the previous section, we shall now discuss lan-
guage modeling and its various aspects, including the pertinence of the topic
to our work.

Language modeling is one of the fundamental task in the field of statistical
NLP. In essence, it requires an understanding of a natural language based
on which, a sequence of words can be assigned a probability, representing
the model’s confidence in the plausibility of the statement. In other words,
given a sequence of words wi = w

(1)
i , . . . w

(T )
i where each word w

(t)
i belongs

to a fixed vocabulary V, we require the language model to learn to predict
pdata(w

(1)
i , . . . w

(T )
i ). This can be calculated by a product of conditionals as

follows:

p(w(1), . . . ,w(T )) =
T∏
t=1

p(w(t) |w(1), . . . ,w(t−1)) (2.28)

Based on this, we can task the models with predicting the next word given a
sub-sequence of input sequence, iterating one word at a time, and train them
so.
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2.3.1 n-gram Models

One of the simplest ways to model the aforementioned conditionals is by the
use n-grams. An n-gram is a sequence of n word tokens. For instance, a
bigram (or 2 gram) model consists of pairs of 2 words like “hello world”,
“domain invariance” etc, along with a score p2-gram(′world′|′hello′). Thus, in
an n-gram model, the probability of mth word of a sequence depends upon
the past n − 1 words preceding it. Eqn. 2.28 can thus be appropriated as
follows:

p(w(1), . . .w(T )) = p(w(1), . . . ,w(m−1))
T∏
t=m

p(w(t) |w(t−n+1), . . .w(t−1)) (2.29)

These models can be trained with the MLE principle (Sec. 2.2) “simply
by counting how many times each possible n gram occurs in the training
set.” (Goodfellow et al., 2016, Ch. 12.4.1). By nature, n-grams with short
values of n cannot capture long range dependencies of the language, and in-
creasing n leads to an exponential increase in the possible word combinations,
plaguing the model with data sparsity

2.3.2 Word Embeddings

Word embeddings, a neural approach to language modeling overcome the
aforementioned shortcomings by producing a distributed representation of
words. Instead of assigning a unique representation of each word, and ex-
plicitly modeling the relations between them, in a distributed representation
scheme, each word is assigned a vector of value (“a pattern of activations”)
in a shared space. The meaning of the words and their relations to oth-
ers are captured by the activations in the vector and the similarity between
them (Goldberg, 2017, Ch. 10.4). This results in words with similar meaning
being neighbours in the shared space.

Numerous approaches exist for designing and training word embeddings
model. Notably, Mikolov et al. (2013) propose one of the most popular
approach for training word embeddings namely, skip-gram models. Skip-
gram models are trained to predict the context given a target word, i.e. words
surrounding the target words. This is done by optimising the following loss
function:

LSGNS = − 1

|C|

|C|∑
t=1

∑
−C≤j≤C,j 6=0

log pmodel

(
x(t+j)|x(t)

)
(2.30)
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where x(1:T ) is a sequence sampled from the training data. In practice x(t)

represents the tth word occurring in the sequence, as an index of the vocab-
ulary V (the feature space for the task). Using this, we can then define a
skip-gram model as:

x
(t)
emb = Wembx

(t) (2.31)

ŷ = softmax(Wcontextx
(t)
emb) (2.32)

pmodel(x
(t+j)|x(t)) = ŷ (2.33)

where Wemb is a linear layer (without a bias or an activation) with |V| input
dimensions and an arbitrary hidden dimension (typically 300), also known as
the embedding layer, and correspondingly Wcontext is another linear layer
known as the context layer which maps the transforms the hidden space to
the output space.

Here the embedding layer (or the embedding matrix) is of interest to us,
since it transforms a word index to a low dimensional representation space.
This is used in downstream models by using the weights of a pretrained
embedding layer to initialise femb, the bottom layer of most encoder based
architectures discussed in Sec. 2.2.3. We discuss their use in more detail in
the next chapter.

2.3.3 Recurrent Language Models

The embedding models while beneficial across a wide variety of tasks, are
shallow networks which take a limited context of words into accounts. Thus
in a conditional word prediction task involving long term dependencies, we
don’t expect the embedding models to excel. Further, these models treat
language not as a sequence but as a bag of words. To be able to make
inferences based on the sequential nature of words, we can use recurrent
networks trained on the language modeling task.

As described in Sec. 2.2.3, we can treat language modeling as a token
based classification task wherein we train the model to predict the next
word given the sequence so far. Given an arbitrary corpus of unlabeled
text, which we have practically endless sources of, we can use the following
labeling function: f(x(t)) = xt+1 to create a supervised dataset for language
modeling whose feature and label spaces are both V (the vocabulary).

We can define our recurrent language model using Eqn. 2.21, Eqn. 2.22,
Eqn. 2.24 based on the encoder-classifier model. In the context of language
models, we refer to this architecture as the encoder-generator architecture
given that fmlp (Eqn. 2.24) is used to generate the next word. Using the
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output of the classifier as a distribution over the label space gives us a pmodel
which we can use to train our model using the MLE principle:

pmodel(y
(t)|x(1:t)) = ŷ(t) (2.34)

The recurrent encoder, in this model enables it to capture sequential
information, and therefore model more complex phenomenon like long term
dependency (Linzen et al., 2016), and hierarchical relations (Gulordava et al.,
2018). Notably, given that the same encoder architecture is used in multiple
forms of NLP models (including sequence classification, transduction mod-
els), we can potentially use the encoder of an already trained language model
to initialise other task specific models, imparting them with a better under-
standing of the language. In the next section, we shall outline the field of
transfer learning, the use of pretrained models falls under whose purview.

2.4 Transfer Learning

In so far, we discussed the manners in which neural models can solve a wide
variety of NLP tasks. This isn’t to suggest that these models understand the
language in a sense that we’re familiar with. Only, that these models can fit
very complex distributions given ample labeled data to train on. However,
labeled data is not always easy to come by. When working with low resource
languages or on complex tasks with no publicly available datasets, creating
labeled data can be difficult, hindering the use of neural approaches. The
field of transfer learning allows us to deal with these scenarios by leveraging
the data of some related task or domain, and increasing the generalisation
capabilities of models to perform better on out of domain data. In this
section, we provide a short overview of the field, focusing primarily on aspects
which are of relevance to our work, namely inductive transfer learning. For
a comprehensive summary, we refer interested readers to Chapter 3 of Ruder
(2019).

We begin by providing a formalism which can ground the discussion below
to consistent notations and expressions. Recall, that we can describe any
domain D by a feature space X , and a marginal distribution pdata(X); and
any task T by a label space T , a marginal distribution of labels pdata(Y ),
and a conditional distribution pdata(Y |X). Given a source domain Da and
task Ta, and a target domain Db and task Tb, we wish to be able to leverage
the source Da and Ta while learning to model pdata(Yb|Xb).

Whether information from the source is transferable to the target depends
on the similarity between the two. It would be generally easier to achieve
a good performance on the target task if for instance the they both involve
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inputs sampled from articles within the same genre, as opposed to articles
from different genres and languages. This notion of difference between the
domains of source and target task is called the domain shift, and is discussed
at length in Sec. 4.3.2. A similar notion, that of difference between the
labeling distribution between the two is called the task shift.

2.4.1 Multi-task Learning

Under multi-task learning or MTL, we train the model to solve both the
tasks at the same time. This is usually accomplished by the means of
partly sharing the model between the tasks, as proposed in (Caruana, 1993).
Specifically, this involves sharing the hidden layers between all tasks, while
keeping the output layer (or few layers preceding it) specific for each task.
While training the model, we use a different loss function for each task -
La
(
fa(g(x; θg); θfa),y

)
, and Lb

(
fb(g(x; θg); θfb),y

)
where fa, fb are task spe-

cific layers, and g is the shared layer of the model. We can then modify the
objective function (Eqn. 2.6) as follows:

θ∗ = argmin
θ

λaEx,y∼p̂aL
(
fa(g(x; θg); θfa),y

)
+λbEx,y∼p̂bL

(
fb(g(x; θg); θfb),y

)
(2.35)

where λa, λb are hyperparameters.
Training the models to perform more than one tasks simultaneously incen-

tivises (biases) it to prefer representations which captures knowledge useful
for more than one task, imparting it with a so called representation bias, and
correspondingly reducing its tendency to overfit on one distribution. This
strategy thus can be better for the performance over both the source and
target tasks, as opposed to training independent models to perform them
separately. Further, MTL increases the amount of samples the model can
train of, which in cases of slight domain and task shift, can be beneficial
in and of itself. Moreover, given that all tasks (or rather, samples from all
tasks) contain some degree of noise, generated by different noise patterns,
MTL can bias the model to learn better representations of the input by ab-
stracting out the noise. Thus, through averaging noise patterns, increased
training data, and representation bias MTL can increase performance across
multiple tasks.

Interestingly, we can leverage the aforementioned benefits even in sce-
narios when we don’t have more than one tasks we wish the model to excel
on (non-transfer learning scenarios). Treating the main task as our source
task, we can choose a related auxiliary task as a target task in a manner
which increases the model performance on source. Choosing an appropriate
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auxiliary task is of paramount importance, and has invited numerous investi-
gations over the years (Caruana, 1997; Baxter, 2000; Ben-David and Schuller,
2003; Plank and Alonso, 2017). Generally, auxiliary tasks include predicting
underlying statistical features of inputs, unsupervised outputs (such as recon-
structing the input sequence (Rei, 2017)), and more commonly performing
a related supervised task such as predicting low level characteristics of the
language (parts of speech tagging, named entity recognition) (Niehues and
Cho, 2017) etc.

For the purposes of our work, we are interested in using supervised adver-
sarial tasks as our auxiliary task. An adversarial task is any auxiliary task
which accomplishes the opposite of what we want as our main task. That
is to say that minimising the loss for adversarial tasks would result (directly
or otherwise) in the maximisation of the loss on main one. These tasks can
be used to reduce certain biases from the model, explicitly ignore certain
features of the data (Gong et al., 2018), or generally regularise the model.
In Chapter 4, we discuss one such adversarial task which we hypothesise can
be beneficial for our purposes.

2.4.2 Sequential Transfer Learning

A much more common scheme of trying to solve source and target tasks is to
train the model one after the other, or sequentially over the different tasks.
The goal in these cases is to effectively transfer the (task specific) under-
standing of the domain gained while training on the source task, to improve
performance on the target. Typically, we refer to the first phase, or when a
model is trained from scratch to perform a task as the pretraining phase,
and when using it subsequently to solve another task as the finetuning (or
adaption) phase. Thus, given a task from a low resource domain, or with
inadequate number of labeled samples, we can choose a task pretraining on
which can impart an understanding of the target domain beneficial for the
latter. Based on the sources of supervision, a pretraining task can be cat-
egorised as (i) supervised pretraining, (ii) unsupervised pretraining or (iii)
pretraining based on distant supervision.

In this work, we are interested in unsupervised pretraining to improve
target task performance. While pretraining a model to perform a specific
task can be helpful in cases with minimal task shift, these models learn
to only focus on aspects of the data which are pivotal for solving the task
at hand. On the contrary, unsupervised pretraining can be more general,
increasing the number of potential downstream tasks which can benefit from
it. Further, unsupervised data is much more easily available even in low
resource languages. Given this, unsupervised pretraining is an appealing
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method of increasing model performance, and has been extensively studied
both in the context of neural and non-neural machine learning approaches.

In NLP, primarily two forms of pretraining are predominant namely, ma-
trix factorisation to factorise a word-word co-occurrence matrix (Søgaard
et al., 2017), and language modeling. As discussed in Sec. 2.3, using neural
language models can capture complex linguistic phenomenons which can be
beneficial for a wide variety of NLP tasks. We discuss this in greater detail
in the next chapter, Chapter 3.

2.5 Conclusion

In this chapter, we outlined numerous concepts needed for a comprehensive
understanding of our work. We began the discussion with introducing the
field of Natural Language Processing (NLP) (Sec. 2.1), a subset of deep learn-
ing foundations including the concepts of MLE, loss, and gradient descent
(Sec. 2.2). We also elaborated some of the pertinent layers constituting deep
learning models, and the architectures in which they are frequently combined
to solve NLP problems (Sec. 2.2.2, 2.2.3). Further, we introduced the task of
language modeling, and provided an overview of approaches which can solve
the task (Sec. 2.3), and finally provided a brief outline of inductive trans-
fer learning approaches including sequential transfer learning, and multi-task
learning (Sec. 2.4).
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Chapter 3

Using Language Models
for NLP Tasks

After discussing the concepts of NLP tasks (Sec. 2.1), language models
(Sec. 2.3) and transfer learning (Sec. 2.4), we now discuss the context sur-
rounding our work, namely “the use of pretrained (recurrent) language models
for downstream tasks”.

3.1 Motivation

Recurrent Neural Language models (word embeddings, or entire encoders), as
discussed previously are neural networks which are capable of generating text
akin to the one they’re trained on. Their flexibility in considering k-gram or
skip-gram words when needed, along with their generalisation capabilities on
unseen combinations of words in the context lead us to conclude that they’re
reasonably capable of learning the idiosyncrasies of the domain (and given
language), and modeling pdata(X) for a given domain D. Given that they can
be trained in an unsupervised fashion, i.e. on unlabeled datasets, they can
capture more general aspects of the structure and semantics of the language,
as opposed to training language models on labeled data as an auxiliary task
wherein they’re incentivized to capture the meaning necessary for a given
task and discard everything else (Ruder, 2019, Ch. 3.3.2.3).

Further, recall (Sec. 2.3.3) that neural language models are typically actu-
alized as an encoder-generator network where the encoder learns a mapping
from the input feature space X ⊆W|V |×L to a latent feature space Xenc, ide-
ally comprised of explicit information about the input word sequence, which
can be readily used by the generator to model pdata(X). The role of encoder
thus is similar in neural architectures commonly employed to solve NLP tasks
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(See Sec. 2.2.3), and it would be desirable to incorporate the richer language
model’s encoder for these tasks, as a pretrained sub-network.

Pretrained encoders in these task-specific models could potentially im-
part the model with a better understanding of the underlying text positively
affecting its performance. Also, providing the model with coherent language
understanding from the very start of the training process could help the
model in faster convergence, consequentially enabling the use of neural ap-
proaches in low resource scenarios (with limited availability of labeled data).

3.2 Using Word Embeddings

The aforementioned form of using pretrained models, has long been the norm
in neural approaches for NLP, in the form of pretrained word embeddings.
In this section, we outline their use and the effects they’ve been shown to
have on model performance.

Word embeddings1 (Mikolov et al., 2013; Pennington et al., 2014; Levy
and Goldberg, 2014; Bojanowski et al., 2017) as defined in Sec. 2.3.2 are
word level affine transformations, typically constituting the lowest layer in a
neural network for NLP tasks. They embed input words in a low-dimensional
distributed (often inter-related) feature space representative of the semantic
structure of the word (and its context), typically, such that similar words
have similar vectors (Goldberg, 2016).

Using pretrained word embeddings has shown to be beneficial for numer-
ous tasks. Some of these include part-of-speech tagging (Collobert et al.,
2011), dependency parsing (Chen and Manning, 2014; Kong et al., 2014),
sentence classification (Kim, 2014), and even machine translation (Liu et al.,
2014; Kalchbrenner and Blunsom, 2013; Devlin et al., 2014). Owing to their
ease of use, and tangible performance gains, the use of word embeddings
“has had a large impact in practice and is used in most state-of-the-art mod-
els.” (Howard and Ruder, 2018)

The way to use these embeddings in a task specific model is rather
straight-forward. Weight matrices from the pretrained embedding model
(e.g. word2vec2, GloVe3, fastText4 etc) are used to initialize the first (low-
est) layer of the network, the rest of which is unchanged and trained on the
labeled dataset at hand. In doing so, the embedding layer might be kept
fixed or trainable. We illustrate this in Fig. 3.1.

1Commonly referred to as feature embeddings, word vectors or embedding matrices.
2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
4https://fasttext.cc/
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encoder

classifier

Pretrained
embeddings

Figure 3.1: A typical neural model (for NLP tasks), with the green highlights
indicating the pretrained embeddings.

While beneficial, this approach of leveraging unlabeled data by pretrain-
ing is insufficient, since the rest of the encoder (recurrent, convolutional layers
etc) remains untrained. As a result, while the model gains a better semantic
and lexical understanding of the input word tokens, it needs to learn to de-
rive meaning from a sequence from scratch, thereby serving little assistance
in modeling compositionality, anaphora, negation etc. (Ruder, 2018) makes
the followings statement on the matter:

Using word embeddings is like initializing a computer vision model
with pretrained representations that only encode edges: they will
be helpful for many tasks, but they fail to capture higher-level
information that might be even more useful.

3.3 Using Recurrent Language Models

Given the benefits of pretraining (Sec. 3.1), and the limitations of using pre-
trained embeddings (Sec. 3.2), it is desirable to be able to replace the entire
encoder of a task specific network, with a language model’s (LM). In the
simplest setting, this would be akin to using pretrained embeddings wherein,
granted that the task specific model and the language model have similar
encoders, we could simply initialize the former with the already trained pa-
rameters of the latter. Doing so would induce the yet untrained (task specific)
model with the ability to not only get a rudimentary lexical and semantic
understanding of the input word tokens, but an entire set of hierarchical
representations (features) that the LM has learned.

27



This line of reasoning is confirmed by (Dai and Le, 2015) who pretrain
a language model on the data from the task’s domain, and use its encoder
as an initialization for the task specific model. We visualize their transfer
mechanism in Fig 3.2a. They find that the process decreases the error rate by
∼ 43 % (13.50% to 7.64%) for IMDB Review sentiment classification (Maas
et al., 2011) (which we experiment with, in Sec. 5.4), which is significantly
more when compared to only using pretrained embeddings: ∼ 25% (13.50%
to 10.00%). Their findings confirm that the task shift (Sec. 2.4) between
language modeling (Ta) and sentiment classification (Tb) can be reasonably
bridged, in this setting.

However, in their experiments, their language model is trained on text
from within the same domain. We refer to this form of pretraining as task-
specific pretraining. This negatively affects the appeal of their work since
this approach might not retain the performance improvement in low resource
scenarios where there is a limited availability of labeled data. Ideally, we
would want to leverage text from general domains by the means of pretraining
in a manner which enables faster convergence and/or overall improvement.
We refer to this form of pretraining as task-invariant pretraining.

Therein lies a problem, namely that if the domain shift (Sec. 2.4) between
the domains Db of the task at hand, and Da on which the LM was trained,
is substantial, some features would be not representative, when computed
over the task’s data. The feature spaces (outputs of different layers of a
network) have shown to be increasingly less general or more specific from
bottom (input) to top (output) layers (Yosinski et al., 2014), wherein this
generality is representative of that layer’s ability to perform satisfactorily
across data from different domains. This is why pretrained embeddings are
easier to use than entire encoders (Mou et al., 2016). The work of (Dai and
Le, 2015) did not suffer from the problem as their pretrained language model
was trained on the same data, thereby incurring no domain shift.

In this light, it is imperative to actively bridge the domain shift to retain
pretrained benefits while fine tuning the model for the target task. Fine
tuning, here refers to training the model with pretrained encoder on task
data {x1, y1;xn, yn|xi ∈ Xb, yi ∈ Yb}. Mou et al. (2016) demonstrate that
recurrent networks are ineffective in bridging both, the domain shift and
the task shift simultaneously. Note however that in their experiments, they
didn’t attempt to transfer between language modeling and sentiment classi-
fication tasks, as is our case. Nevertheless, their findings hint at a need for
complex, multi-part approaches for satisfactory performance improvement
while pretraining with task-invariant language models. The difficulty is fur-
ther compounded upon by the fact that during fine-tuning, the model might
forgo language understanding in favor of overfitting on the given training
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Figure 3.2: An illustration of pretraining schemes of (a) Dai and Le (2015)
and (b) Howard and Ruder (2018). In (a), the language model is pretrained
on text from the target domain. Its encoder is then used to initialize the
parameters of the task solver network. In (b), the language model is first
pretrained on text from general domain, and then fine tuned again with text
from the target task before being used in the task solver network. In both
cases, we use (�) blue color to denote generators (for language modeling),
and (�) green for classifiers (for the target task).

data, effectively negating the benefits of pretraining, and in some cases be-
ing adversely affected by it. This phenomenon is referred in literature as
catastrophic forgetting (McCloskey and Cohen, 1989; Kemker et al., 2018),
and has been actively studied, with no single solution 5 which works across
tasks, and domains. Further, in our setting, the classifier (top-most layers
of the task specific model) would be completely untrained, requiring it to
be trained more than the encoder. However, given higher loss at the start
of the training (fine-tuning) process and no means to disincentivise the en-
coder from changing its parameters, the model stands an increased chance of
catastrophic forgetting. This particular effect is partly countered by freezing
schedules which inhibit certain parts of the model from training (hence the
word ”freezing”) during certain parts of the training process (Felbo et al.,
2017).

To tackle the aforementioned challenges, Howard and Ruder (2018) pro-
pose a hybrid technique involving both task-invariant and task-dependent
pretraining which shows noticeable improvements for a variety of NLP tasks

5Elastic Weight Consolidation (Kirkpatrick et al., 2017) was shown to solve catastrophic
forgetting in supervised learning (over MNIST (LeCun et al., 2010)) and reinforcement
learning settings (over Atari games (Bellemare et al., 2013)). (Kemker et al., 2018) in-
stead “demonstrate that despite popular claims [Kirkpatrick et al. (2017)], catastrophic
forgetting is not solved.”
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including sentiment (Maas et al., 2011), question (Voorhees and Tice, 1999),
and topic (Zhang et al., 2015) classification. We outline their three phased
learning scheme following the use-case for sentiment classification6. Here
we use Ta to denote the language modeling task over task invariant text
- Wikitext103 (Merity et al., 2017) (Da), and Tb to denote the sentiment
classification task over IMDB Review Dataset (Maas et al., 2011) (Db):

1. Phase 1: Pretrain an three layered AWD-LSTM (Merity et al., 2018)
based language model (Ta) over text from Da.

2. Phase 2: Train another similar language model (Ta∗), with using the
encoder from Phase 1 over text from Db, i.e. the IMDB Review dataset.
In this manner, the encoder could familiarize itself with target task’s
text, bridging the domain shift.

3. Phase 3: Use the encoder from Phase 2 to initialize a task specific text
classification model following an encoder-classifier architecture (Sec. 2.2.3),
and train it over Tb.

We illustrate this using Fig. 3.2b. Apart from improved performance over
tasks with ample training data, their approach benefits from comparable per-
formance in very low resource domains (100 labeled examples) w.r.t. train-
ing from scratch with 1000 labeled examples (randomly sampled subsets of
IMDB Review Classification task). That said, their approach relies on a
slew of regularization and training optimization tricks including learning rate
schedules, layer freezing schedules, batch normalization (Ioffe and Szegedy,
2015), embedding and variational dropout , variable length backpropagation
sequences (Merity et al., 2018), some of which are novel, developed along-
side their three phased scheme, and have substantial contributions in their
approach’s improvements.

3.4 Using Transformers based Language Mod-

els

Transformers (Vaswani et al., 2017), are non-recurrent (state-less) sequence
transduction models which use multi-head self-attention to condition its out-
puts across time steps. Very recently (Radford et al., 2018; Devlin et al.,
2018; Radford et al., 2019), it has been shown that transformers can be pre-
trained and used in a setting similar to the one of our interest, namely - un-
supervised, task-invariant pretraining, and supervised fine tuning to achieve

6Although the approach is unchanged for any given task.
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state-of-the-art results over a variety of NLP tasks. While not the focus of our
work, the use of transformers in this setting is nonetheless very interesting.
We thus discuss the aforementioned approaches and outline their findings in
this section.

OpenAI GPT (Radford et al., 2018) use the transformer-decoder (Liu
et al., 2018) model which uses position-wise feed-forward layers over encoded
input tokens to compute the familiar marginal likelihood for language mod-
eling (Eqn. 2.28), and train it over the BooksCorpus dataset (Zhu et al.,
2015), consisting of “long stretches of contiguous text which allows the gen-
erative model to learn to condition on long range information” (Radford
et al., 2018). Post pretraining, they use a new feed-forward layer to com-
pute the conditional distribution over the target task’s label space the trans-
former’s final activation, along-with recreating the input sequence, by the
means of the aforementioned language modeling setup. This technique, has
also been explored in different contexts and is shown to lead to general per-
formance improvements (Peters et al., 2017; Rei, 2017). Through their ex-
periments, performed over multiple NLP tasks including natural language
inferencing (Bowman et al., 2015), semantic similarity (Dolan and Brockett,
2005) and text classification (Warstadt et al., 2018), they find that their ap-
proach outperforms existing ones on 9 out of 12 tasks. They attribute this,
primarily to the ability of their model to generalize over long sequences, cap-
turing long range dependency effectively, something which recurrent models
have shown to have problems with (Bengio et al., 1994b).

Devlin et al. (2018) improve upon their work, primarily by introducing a
bidirectionality in their language encoding scheme. Previously, transformers
encoded information in a classical left-to-right fashion enforced by positional
embeddings, and attention masks over decoder’s self attention layers (since
transformers, by design are sequence agnostic). To do so, they re-purpose
masked language modeling technique (Taylor, 1953) to pretrain their lan-
guage model wherein random words from the input sequence as replaced
with [MASK] tokens, and training the model to predict the masked words.
They also include a textual entailment aspect to their pretraining, occa-
sionally replacing consecutive sentences in the input corpus with a random
sentence, and training another classifier alongside which is tasked with iden-
tifying this swap. Through their experiments, over a larger variety of NLP
tasks, they find that their model converges relatively slower when compared
to Radford et al. (2018), after which it outperforms them more often than
not. This is attributed by the authors primarily to the bidirectionality of the
model, rather than the auxiliary entailment based pretraining. These ad-
vances have significantly impacted the NLP research area, inviting numerous
further applications and investigations (Radford et al., 2019; Alberti et al.,
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2019; Stickland and Murray, 2019).

3.5 Conclusion

In this chapter we outline the existing literature regarding the use of language
models, trained in a task-invariant fashion, for the benefits of downstream
NLP tasks. We discuss potential pitfalls caused by domain shift and task
shift between the language modeling task and the target task. We further
discussed the ways in which these pitfalls have been (or can be circumvented),
by primarily focusing on the works of Dai and Le (2015); Howard and Ruder
(2018), whose approaches we summarise in Fig. 3.2.

In the next chapter, we discuss domain adversarial training - a technique
which we hypothesize can help overcoming the domain shift, and further
improving the use of pretrained models in our setting.

32



Chapter 4

Domain Adversarial Training
of Neural Networks

As mentioned in Sec. 1, we aim to explore whether domain adversarial train-
ing can benefit the use of pretrained language models for downstream task
(Chapter 3). In this chapter, we introduce the concept of domain adver-
sarial training, discuss the theoretical foundations behind the concept, and
illustrate the manners in which we can use it for our potential benefit.

4.1 Motivation

In Chapter 3, we discussed the potential pitfalls that a measurable domain
shift can bring during fine-tuning a pretrained model. Here, domain shift
can be thought of as a notion of difference in marginal distributions between
the source and target domains (pdata(Xb) and pdata(Xa)). A related concept
is that of domain invariance, which refers to a model’s ability to encode
inputs from different domains, in such a manner that given representations
corresponding to the input, it is impossible (or more difficult) to deduce its
corresponding domain. In this work, the idea is of interest to us, due to
the following reasoning - “if we can induce some degree of domain invariance
to the encoder (during pretraining or finetuning), we effectively reduce the
domain shift between the two phases. If accomplished without losing infor-
mation needed to make predictions for the target task, this may lead to a
potential performance improvement.” We thus focus on means of inducing
domain invariance in our models, in the rest of this chapter.
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4.2 Overview

Domain adversarial training, proposed in (Ganin et al., 2016) is an auxiliary
task, intended to induce domain invariance in a model during the training
process. Broadly put, the idea is to augment a given neural network with a
domain classifier in a multi-task fashion (see Sec. 2.4.1), tasked with perform-
ing the following auxiliary task: predicting a given input’s domain using its
encoded representations. During training, the domain classifier learns to cor-
rectly predict the domain, while the encoder, adversarially, learns to obscure
that information (simultaneously, while training to perform well on the task).
This is accomplished by the means of flipping the polarity of the gradients
during backpropagation between the domain classifier and the encoder.

Formally, let Ta be a task over domain Da, and Tb another task over do-
main Db. For simplicity’s sake, we assume that Ta and Tb have the same
label space1 Y (e.g. sentiment classification over movie and restaurant re-
views). In this scenario, also referred to as supervised domain adaption, we
have samples (xai , y

a
i ) drawn i.i.d. from task Ta i.e. xai ∼ Xa, y

a
i ∼ Y , and

similarly (xbi , y
b
i ) drawn from task Tb. Further, given an encoder-classifier

network (Sec. 2.2.3) characterised by the following equations:

h = fenc(x; θenc) (4.1)

ŷ = softmax(fclf (h; θclf )) (4.2)

which is trained using an arbitrary mini-batch based algorithm (for eg. stochas-
tic gradient descent), with mini-batches sampled from both (xai , y

a
i ) and

(xbi , y
b
i ). Using an arbitrary loss function Ltask, we can use the following

objective function to train the model:

θ∗ = argmin
θ

Ex,y∼{p̂adata,p̂
b
data}
Ltask(ŷ,y) (4.3)

Domain adversarial training in this generic scenario involves solving an
auxiliary task Ta,b whose domain consists of samples from Ta and Tb, which
is to say Xa,b = Xa ∪ Xb. The label space Ya,b is a set {0, 1} where 1
indicates that a given input is sampled from Xa, and 0 from Xb. We can
then use the following labeling function to create a label set Ya,b: IXa , where
I : Xa,b 7→ {0, 1} is an indicator function2. During the (domain adversarial)
training of our model, we would want the model to predict labels for this task,

1We will demonstrate, towards the end of Sec. 4.3.4, the trivial modifications we make
to the setup below, to enable domain adversarial training in a multitask setting (e.g.
sentiment classification of movie reviews, and topic classification of factual questions).

2https://en.wikipedia.org/wiki/Indicator_function
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along with Ta and Tb. To do so, we augment our encoder-classifier network
with an auxiliary classifier fdom called the domain regressor, parameterised
by θdom. This augmented network is represented by the following equations:

h = fenc(x; θenc) (4.4)

ŷtask = softmax(fclf (h; θclf )) (4.5)

ŷdom = softmax(fdom(h; θdom)) (4.6)

Let Ldom be another loss function which computes the model’s error for
the domain classification task. Now, if we add this loss term to our objective
function akin to Eqn. 2.35, during training, the model would strive to improve
at both - the main and the auxiliary task. That is, it would learn to predict
the label for the target task, as well as find which domain does the input
sample belong to. We, however aim to do quite the opposite - train the
model to predict the target task’s label while not being able to predict the
domain from which the input was sampled. Thus, our modified objective
function is:

Ex,y∼{p̂adata,p̂
a
data}

[
Ltask(ŷtask,y)− λLdom(ŷdom, IXa(x))

]
(4.7)

where λ is a hyper-parameter which is used to tune the trade-off between
these two quantities during the training process.

Correspondingly, the parameter update step under this objective function
would involve the following changes:

θenc ← θenc − η(∇θencLtask − λ∇θencLdom) (4.8)

θclf ← θclf − η∇θclfLtask (4.9)

θdom ← θdom − ηλ∇θdomLdom (4.10)

We can then use the augmented (i) model (Eqn. 4.4, 4.5, 4.6), (ii) tasks
(Ta, Tb, Ta,b), (iii) objective function (Eqn: 4.7) and (iv) the aforementioned
update steps together to create a training schedule which collectively consti-
tute the domain adversarial training of neural networks. An illustration
of the training schedule is provided in Fig. 4.1.

4.3 Theoretical Basis for Domain Adversarial

Training

The aforementioned scheme of training justified so far by an intuition (Sec. 4.1)
has roots in a seminal work on domain adaption (Ben-David et al., 2006,
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Figure 4.1: An abstract representation of the domain adversarial augmenta-
tions to generic neural architectures . Here the (�) green colored encoder,
and the (�) blue colored task classifier together comprise a regular deep
learning model. The (�) red colored domain classifier is augmented to the
model. During the parameter update step, the (�) black colored gradient
reversal layers flips the polarity of the gradients, modeling the update step
as depicted by Equations (4.8) to (4.10).

2010), the findings of which were adapted to constitute a neural training al-
gorithm by (Ganin et al., 2016), which we slightly modify for our purposes.
incorporate in our context (Chapter 3). In this section we primarily discuss
their work, and outline the manner in which their findings give a theoretical
basis to the objective function (Eqn. 4.7)

4.3.1 Preliminaries

Consider a unsupervised domain adaption scenario wherein the source task
Ta has labeled samples but the target task Tb does not. That is to say that we
have been provided with n samples {(xai , yai )}ni=1 where xai ∼ pdata(Xa),and

yai ∼ pdata(Y |X = xai ); and n
′

samples {(xbi)}n
′

i=1 where xbi ∼ pdata(Xb).
Since we work in domain adaption scenario, the feature space Xa,b and label
space of the two tasks Ya,b should be the same. This is not to suggest that
the marginal distribution pdata(X) or the conditional distribution pdata(Y |X)
should be identical. We follow this scenario in the rest of this section unless
specified otherwise.

Additionally, we shall require the following definitions for our purposes:

Definition 4.1. Hypothesis: A hypothesis h is a function which maps
elements from the feature space to the label space i.e. h : X 7→ Y .
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This generic definition includes a wide variety of machine learning models
including a linear classifier, logistic regressor and even complex transformers
based classifiers. In the context of neural networks, we can see them simply
as an alternate representation of a model f(; θi) with a fixed set of parameters
θi.

Definition 4.2. Hypothesis Class: A hypothesis class H is any set of
hypothesis h. We constrain H to only include hypotheses having the same
Vapnik–Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971).

In the context of neural networks, H can be seen as a model architecture
f(; θ) where θ may take any value in the parameter space.

Definition 4.3. Symmetric Hypothesis Class: As mentioned in Ganin
et al. (2016), a given hypothesis class H for an arbitrarily sized discrete label
space Y is symmetric if for all h ∈ H, and for any permutation of labels
c : Y 7→ Y , we have c(h) ∈ H.

Under this definition, most neural architectures are a symmetric hypoth-
esis class. “[Symmetric hypothesis classes] are useful, since they are a natural
choice when there is no prior knowledge about the relations between the pos-
sible labels.” (Daniely et al., 2015). While not pivotal to the discussion below,
this concept is used in Lemma 4.3.1 and the generalisation of Definition 4.7.

Definition 4.4. Error of a hypothesis: We define a notion of error of a
hypothesis as a probability that the label assigned to an input by a hypothesis
h disagrees with the label assigned to it within the dataset.

ε(h, px, py/x) = Ex∼px,y∼py/x(X=x)I[h(x) 6= y] (4.11)

Definition 4.4.1 Empirical Error: We can easily extend this notion to
compute error based on labeled samples simply as:

ε̂(h, (xi)
n
i=1, (yi)

n
i=1) =

1

n

n∑
i=1

I[h(xi) 6= yi] (4.12)

We can thus represent the error of a given hypothesis on task Ta with
ε(h, pdata(Xa), pdata(Ya|Xa)), or simply as εTa(h) for notational simplicity.
Likewise, we can represent the empirical error by ε̂(h,Xa, Ya) or ε̂Ta(h)

Definition 4.5. Ideal Joint Hypothesis: (As mentioned in (Ben-David
et al., 2010, Def. 2),) Given a hypothesis class H, and tasks Ta, and Tb, an
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ideal joint hypothesis h is the hypothesis from the class which minimises the
combined error:

h∗ = argmin
h∈H

εTa(h) + εTb(h) (4.13)

We denote the combined error of the ideal hypothesis by

γ = εTa(h∗) + εTb(h
∗) (4.14)

In practice, we expect γ to be rather small for most domain adaption
scenario, signifying that it is possible to find a hypothesis that works well
across the two tasks. An example where this assumption wouldn’t hold
would be the case when Tb is adversarial w.r.t. to Ta, which is valid to some
extent in Generative Adversarial Networks (Goodfellow et al., 2014).

4.3.2 Domain Divergence

Central to the work of Ben-David et al. (2006, 2010) is a notion of domain di-
vergence in the context of a given hypothesis or hypothesis class. In essence,
domain divergence quantifies our intuitive idea of domain shift (See Sec. 2.4).
There are a multitude of ways to estimate the difference between two do-
mains including L1 divergence (variational divergence) or Kullback-Leibler
divergence (Kullback and Leibler, 1951).

Definition 4.6. L1 Divergence: L1 divergence or variational divergence
between two domains Da,Db is a notion of distance between their constituent
marginal distributions pdata(X) defined as:

d1(Da,Db) = 2 sup
B∈B
|pdata(Xa = B)− pdata(Xb = B)| (4.15)

where B is the set of measurable subsets under the feature spaces Xa,Xb

The use of L1 estimate, in our context is discouraged primarily owing to
the following two reasons:

• Given that we work with a finite samples from an unknown distribution
pdata, finding B – all measurable subsets from the feature space hinders
our ability to accurately estimate the L1 divergence between Da and
Db (Batu et al., 2000; Kifer et al., 2004).

• For our purposes, which we discuss in the next section, it is disadvanta-
geous to use a metric as strict as L1 since it may include subsets B ∈ B
(while computing the supremum) which our hypothesis class might not
be able to solve anyway.
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Ben-David et al. (2006, 2010) thus use new divergence measure, based on
the earlier work of (Kifer et al., 2004). We now mention their definition, for
the purposes of binary classification tasks i.e. Y = {0, 1}3.

Definition 4.7. H-Divergence: (As mentioned in Ganin et al. (2016))4,
Given domains Da, Db over a feature space Xa,b characterized by marginal
distribution P (Xa) and P (Xb) respectively, and H be a hypothesis class, the
H-Divergence between Da,Db can be defined as:

dH(Da,Db) = 2 sup
h∈H

∣∣ Pr
x∼pdata(Xa)

[h(x) = 1]− Pr
x∼pdata(Xb)

[h(x) = 1]
∣∣ (4.16)

This is to say that H-divergence between two domains, for a hypothesis
class H depends on ability of hypotheses h ∈ H to infer whether an example
was sampled from the first or the second distribution. This measure thus
overcomes the two limitations mentioned above. Recall however that we do
not have access to the real pdata, but only to a set of samples generated from
it, characterized by p̂data. We thus need an empirically measurable variant
of H-Divergence.

Lemma 4.3.1. (Ben-David et al., 2010, Lemma 2) Consider a symmetric
hypothesis class H (i.e. for every h ∈ H, the inverse hypothesis 1− h is also
in H). Further, consider a task Ta,b (as defined in Sec. 4.2) whose domain
consists of m samples Xa, Xb from Da and Db respectively; and the labels
corresponding to each sample are characterized by I[x ∈ Xa] ∀ x ∈ Xa ∪Xb.
The empirical H-divergence can then be defined as follows:

d̂H(Xa, Xb) = 2
(
1−min

h∈H

[ 1

m

∑
x:h(x)=0

I[x ∈ Xa]+
1

m

∑
x:h(x)=1

I[x ∈ Xb]
])

(4.17)

where I[x ∈ Xa] is the binary indicator variable which is 1 when x ∈ Xa and
0 otherwise.

We now have a divergence measure that we can compute given finite
samples and a hypothesis class. The following lemma can then be used
alongside Lemma 4.3.1 as a substitute to H-Divergence (which we can not
compute).

Lemma 4.3.2. (Ben-David et al., 2010, Lemma 1) Consider a hypothesis
class H with VC Dimension (Vapnik and Chervonenkis, 1971) d, and m

3Note that as mentioned by Ben-David et al. (2006), and further repeated in (Ganin
et al., 2016), the following can be easily generalised to a multi-class setting, given that H,
the hypothesis class is symmetrical (Def. 4.3).

4We appropriate their notations to maintain consistency with ours.
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samples Xa, Xb from Da and Db respectively. Let d̂H(Xa, Xb) be the empirical
H-Divergence between the samples. Then, for any δ ∈ (0, 1) with probability
at least 1− δ,

dH(Da,Db) 6 d̂H(Xa, Xb) + 4

√
d log(2m) + log(2

δ
)

m
(4.18)

This lemma is based on (Kifer et al., 2004, Theorem 3.4), upon which Ben-
David et al. (2010) made slight modifications.

Note that in Eqn. 4.17, h(xi) = 0 implies that according to the hypoth-
esis h, xi ∈ Xb, and that I[xi ∈ Xa] = 1 if xi ∈ Xa. Thus, the term being
minimised is simply error of a given hypothesis while classifying the domains
from which a given input was sampled - eTa,b(h) where Ta,b is as defined in
Sec. 4.2. Note also that we intend to find the hypothesis with minimum
eTa,b(h) amongst all possible hypothesis in H. For any slightly complex fea-
ture space Xa,b, and slightly complex model, this becomes infeasible due to
an exponentially increasing parameter (hypothesis) space. Ben-David et al.
(2006) thus define Proxy A− distance (PAD), which can approximate Em-
pirical H-Divergence (defined above). Here, A-distance refers to the metric
introduced in Kifer et al. (2004), which can be considered a generalised ver-
sion of H-divergence. Put simply, the idea is to run a learning algorithm
training a classification model (a hypothesis class H) over task Ta,b and use
the classification error of the final hypothesis h∗ as the minimum error (which
the min

h∈H
[.] term tries to find in Eqn. 4.17)

Definition 4.8. Proxy A-distance (PAD): Let εTa,b(h) be the generali-
sation error of an arbitrary classifier (h ∈ H) trained to perform task Ta,b.
Proxy A-distance (d̂A) can then be defined as:

d̂A = 2(1− 2εTa,b(h)) (4.19)

In practice, PAD is computed by an linear SVM (Glorot et al., 2011), or
an MLP (Chen et al., 2012) trained on a split of labeled examples available
under Ta,b; whose classification error is computed over another subset of Ta,b.
In our setting, outlined by Equations (4.4) to (4.6), calculating PAD would
be akin to only training the model to predict ŷdom.

In the following section, we discuss precisely how is the notion of do-
main divergence used to justify the domain adversarial training procedure
(Sec. 4.2).
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4.3.3 A bound relating the source and target error

The domain adversarial training procedure is primarily premised on the fol-
lowing theorem which bounds the error of a classifier on the unlabeled target
domains based on (i) error on the source domain, (ii) domain shift i.e. the
domain divergence between the two domains, and (iii) task shift i.e. the
difference in labeling functions (or the conditional distribution pdata(Y |X))
across the domains.

Theorem 4.3.3. (Ben-David et al., 2010, Theorem 1) Let εTa(h) be the
generalisation error of a classifier h on task Ta, and la be the labeling function
la : Xa 7→ Ya for the task, corresponding to pdata(Ya|Xa). Similarly, let εTb(h),
lb correspond to Tb whose error we wish to bound. We can then define the
following inequality:

εTb(h) ≤ εTa(h) + d1(Da,Db)
+ min

{
Ex∼pdata(Xa)

[
|la(x)− lb(x)|

]
,Ex∼pdata(Xb)

[
|la(x)− lb(x)|

]}
(4.20)

We are familiar with the first (Def. 4.4) and second (Def. 4.6) terms on
the right side of the inequality. The third term represents the difference
between the labeling functions across the two tasks, quantifying our notion
of task shift (Sec. 2.4). However, in our scenario we cannot estimate this
term, since apart from access to the real distributions, we do not even have
access to labeled samples from Tb. Further, akin to L1 divergence, this term
is a conservative bound since it includes instances which a given hypothesis
class might not be able to solve. However, as mentioned in Sec. 4.3.1, we
assume that joint error across the tasks to be low, and thus approximate it
with γ for our purposes.

Further, for reasons mentioned in Sec. 4.3.2, we would like to replace
L1 divergence with a generous measure of domain divergence which can be
empirically measured given samples from the domains - PAD (Def. 4.8). To
do so, we first replace L1-divergence term in Eqn 4.20 with H-divergence.
Then, with the help of Lemma 4.3.2, we replace it with its empirical variant
(Lemma 4.3.1).

Through these modifications, we finally arrive at the following inequality:

Theorem 4.3.4. (Ben-David et al., 2006, Theorem 1) LetH be a hypothesis
class of VC dimension d. With probability 1 − δ over the choice of samples
Xa ∼ (Da)n and Xb ∼ (Db)n, for every h ∈ H:

εTb(h) ≤ ε̂Ta(h) + d̂H(Xa, Xb) + γ + c (4.21)
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where c is a term invariant to data samples or hypothesis h5.

Through their experiments, (Ben-David et al., 2006) confirm that algo-
rithms which not only have low error on Ta, but also have a low H-divergence
achieves a lower error on Tb. They conclude their discussion section with the
following statement - “Rather than heuristically choosing a representation, as
previous research has done [(Blitzer et al., 2006)], we can try to learn a repre-
sentation which directly minimizes a combination of the terms in [T]heorem
[4.3.4]”.

4.3.4 From Theory to Domain Adversarial Training

Based on the findings above, it is desirable to find a hypothesis h′ which is
unable to distinguish between domains, i.e. is domain invariant (Sec. 4.1).
However, h′ must also exhibit low empirical error on Ta for it to perform well
on the unlabeled task Tb. This can be problematic if making predictions for
Ta involves features specific to its domain. Thus, generally, it would be easier
for a model to either have low source error, or to have low H-divergence, but
not both.

Also note that while the theorem was discussed in the context of unlabeled
domain adaption, the resultant trade-off situation holds even while working
with labeled target task, as is our case.

The domain adversarial training mechanism (outlined in Sec. 4.2), as
proposed by Ganin et al. (2016) was created to minimise this trade-off
between ε̂Ta(h) and d̂H(Xa, Xb). Their first modification i.e. to approxi-
mate d̂H(Xa, Xb) with a logistic classifier fdom stems from Proxy A-distance
(Def. 4.8). The domain divergence thus is inversely proportional to the em-
pirical error of the logistic classifier over Ta,b i.e. the task of predicting the
domain from which a given input was sampled.

Further, consider that we often minimise trade-offs by the means of aug-
mentations to the loss (objective) function (e.g. L1 and L2 regularisation).
Treating fdom as a form of paramterised regularisation, we would thus want
to add an additional term to our loss function (Ltask in Eqn. 4.3) which cal-
culates the loss between ŷdom and IXa(x) (the output of labeling function for
task Ta,b), referred to as Ldom hereon. However, if we simply add it to the
Eqn. 4.3, the training algorithm would try to make features dissimilar across
domains in order to minimise the domain classification loss Ldom. We instead
desire for the algorithm to minimise Ltask (and correspondingly minimise
ε̂Ta,b(h)) while maximising Ldom, thereby characterising the aforementioned

5The actual value of c depends upon δ, number of samples n, and the VC dimension d
of H.
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trade-off. We thus subtract Ltask from the existing objective, along with a
hyperparameter λ used to tune to trade-off between the two quantities. The
resultant objective function is as defined in Eqn. 4.7.

Correspondingly we modify the parameter update equation for the en-
coder (Eqn. 4.8) (used while backpropagating) by accumulating the gradients
from two classifiers (∇θencLtask, and ∇θencLdom) after flipping the polarity of
the latter.

This concludes the reasoning behind the domain adversarial training
mechanism. Training a model using these augmentations can impart a de-
gree of domain invariance to the model. The exact extent of which indeed
depends upon the domains at hand; whether the labeling functions across
the domains is similar or not; and the hyperparameter λ. Note that this
doesn’t always translate to a positive performance improvement over tasks.
Like other regularisations, domain adversarial training biases the learning
procedure to favor a particular subset of the hypothesis class over others,
which may be detrimental to performance over the source task. Thus, we
perform a variety of experiments which we describe in the Chapter 5 geared
towards a better understanding of the potential benefits and pitfalls of this
technique.

Remark. So far, we have assumed that that Ta, and Tb share the same
label space Y , and thus the same loss function Ltask. However the generic
nature of domain adversarial training algorithm allows us to simply generalise
for tasks with different label spaces and loss functions. In this case, our
base optimisation equation (prior to domain adversarial augmentations) will
resemble that of Eqn. 2.35.

4.4 Conclusion

In this chapter, we describe the domain adversarial training mechansim which
induces a certain degree of domain invariance to the models. We discussed
the works of (Kifer et al., 2004; Ben-David et al., 2006, 2010) which propose
novel measures of divergence between domains, quantifying the domain shift.
Building upon it, they theorise (Theorem 4.3.4) a bound on the generalisation
error of a hypothesis class over an unlabeled domain. Through the theorem,
they deduce that domain invariance (degree of inability of a class of hypoth-
esis to predict the domains from which a given input was sampled) can be
beneficial for the given scenario. We then discussed the work of (Ganin et al.,
2016) which proposes the learning algorithm which can accomplish this. The
resultant mechanism is described in Sec. 4.2, and illustrated by Fig. 4.1.
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Chapter 5

Experiments

In this chapter, we describe two major experiments where we evaluate whether
domain adversarial training (DATr) can be beneficial while using pretrained
language models for a particular NLP task. We begin the discussion by out-
lining the intuition behind the experiments, and the evaluation metrics used
in this empirical investigation.

5.1 Motivation

As discussed in Sec. 3.3, the transfer of pretrained language models can be
tricky owing to the encoder’s tendency to overfit on the current task, when
faced with a substantial task or domain shift. We thus investigate whether
the bias induced by DATr, namely – to make the encoder domain invariant,
sufficiently regularise the model to prevent the aforementioned overfitting
(Sec. 5.4).

Further, we intend to find whether this mechanism can help in multi-task
scenarios. In these cases, when using a pretrained encoder to solve multiple
NLP tasks at a time, the encoder can either (a) maintain domain invariance
in its output representations, tasking the classifiers to make predictions based
on general features of the text, or (b) learn to map inputs from different tasks
to the shared latent feature space, enabling the use of domain specific features
while making predictions. DATr in this scenario is expected to bias the model
to do the former. Through our experiments, we attempt to quantify whether
we can train an encoder to produce domain invariant representations in multi-
task settings, and whether making predictions with only general features of
the input is instead detrimental to model performance. We discuss this
experimental setup, and its results in Sec. 5.5.
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5.2 Tasks and Datasets

We evaluate our models over, arguably the simplest NLP task namely, text
classification. Given a sequence of words, we expect our model to classify
it in one of the n (predefined) classes. Given their use in recent text clas-
sification approaches, we choose to primarily evaluate the approach on the
task of binary sentiment classification of movie reviews. We use the encoder-
classifier architecture, as defined in Sec. 2.2.3 to solve the task. Also, in line
with the premise of our work, we pretrain the encoder through the language
modeling task over a domain-agnostic (or general purpose) corpus. For this,
we simply use the encoder-generator architecture as discussed in Sec. 2.2.3.

The datasets used for our experiments include:

• Wikitext1031: Merity et al. (2017) released this dataset using text
extracted from Wikipedia. Made for the purposes of language model-
ing, the dataset is an unlabeled collection of text across 28,475 articles
containing 103,227,021 word tokens. We use this dataset to pretrain
our language models for the purposes of downstream fine-tuning. We
choose this dataset primarily for two reasons. Firstly, it is aptly sized
to rigorously train our language model. PennTreeBank (Marcus et al.,
1993), a much more popular dataset for this task, contains roughly
1M tokens consisting of words from a very limited vocabulary of 10k
words. Whereas, (Chelba et al., 2014) consisting of 1B word tokens,
is a collection of sentences in random order, preventing the learning of
long term dependencies as pointed out by (Merity et al., 2017; Devlin
et al., 2018). Secondly, an important work whose technique for using
pretrained language models (Howard and Ruder, 2018) (also discussed
in Sec. 3.3) we incorporate as our baseline, pretrain their models with
this dataset.

• PL04 (Pang and Lee, 2004)2: A collection of 2000 movie reviews
was released by (Pang and Lee, 2004). They collected movie reviews
written by 312 authors before 2002, taking a maximum of 20 reviews
per author. The reviews are labeled as positive or negative, depending
on the ratings assigned by the reviewer along with their review. The
data points (review, labels) are balanced across the labeling space,
that is to say that there are 1000 positive, and 1000 negative reviews

1This dataset is available for download at https://blog.einstein.ai/

the-wikitext-long-term-dependency-language-modeling-dataset/ under the
Creative Commons Attribution-ShareAlike 3.0 Unported License.

2Available at https://www.cs.cornell.edu/people/pabo/movie-review-data/ un-
der the name - polarity dataset v2.0.
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in the dataset. On an average, each review has approximately 813 word
tokens, across a vocabulary of 36,658 words. Note, that in practice, we
don’t use all of the vocabulary (See Sec. 5.4.1). Further, the authors do
not specify the train-test splits of the data, thus we generally perform
an 80-20 split (train on 1600 reviews, and evaluate the model on 400).

• MD11 (Maas et al., 2011)3: Similar to (Pang and Lee, 2004), this
dataset is a collection of labeled movie reviews, however larger in size,
collected from IMDb4. Specifically, it consists of 50,000 labeled, and
50,000 unlabeled reviews. In our experiments, we use the unlabeled
reviews while pretraining the language model, but not while performing
the actual classification task. The labeled reviews are balanced across
the labeling space, same as above. Interestingly, the train-test splits of
the dataset consist of 25,000 reviews each. This 50-50 split enables the
low variance in the performance estimate over the dataset (Maas et al.,
2011, Sec. 4.3.2). While consisting of movie reviews from the same
source, the reviews in this dataset are considerably shorter - having
approx. 278 words per review.

Thus MD11(Maas et al., 2011) and PL04(Pang and Lee, 2004) constitute
the two datasets consisting of domain specific text for our purposes, while
Wikitext103 (Merity et al., 2017) is used as an domain agnostic corpus.

5.3 Models

The models that we use across all our experiments are composed of the
following sub-networks.

• Encoder: The most common sub-network which we use across all
our settings, the encoder (Sec. 2.2.3) is primarily tasked with mapping
the input word sequences to a latent space. In practice, we use a
three layered, bi-directional LSTM model along with an embedding
layer. Our encoder is loosely based on AWD-LSTM (Merity et al.,
2018) which is a culmination of a variety of regularisation techniques
including DropConnect (Wan et al., 2013), embedding dropout (Gal
and Ghahramani, 2016), and, independent embedding and hidden size.
The bottom most layer of the encoder, namely the embedding layer
is randomly initialised with a 400 dimensional vector corresponding

3Publicly available at http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_

v1.tar.gz
4Internet Movie Database - https://www.imdb.com/
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to each word in the given vocabulary. The first and second recurrent
layers are of 1150 dimensions each, and the final one has the same
output dimension as that of the embedding – 400. We represent the
encoder simply with the following equation:

henct = fenc(xt; θenc) (5.1)

where fenc collectively represents the embedding and the encoding lay-
ers.

• Generator: The generator is a simple single layered feedforward (Sec. 2.2.2)
sub-network with softmax activations, which we use in our language
model to output a distribution over the entire vocabulary (the label
space for the language modeling task). The generator takes vectors of
400 dimensions as inputs, and linearly transforms them to a |V | di-
mensional vector before passing it through a softmax layer. Here |V |
represents the number of words in our vocabulary. Similar to (Howard
and Ruder, 2018), and as suggested in (Inan et al., 2017; Merity et al.,
2018) the actual weights of the generator are tied to that of encoder’s
embedding layer, which has shown to be empirically beneficial for the
language modeling task. We use the following two equations (in con-
junction with Eqn. 5.1) to represent our model:

ŷtaskt = fgen(henct ; θgen) (5.2)

pmodel(y|x; θ) = softmax(ŷtaskt ) (5.3)

• Classifier: The classifier, similar to the generator above is a (set of)
layers which produce a distribution over the label space. Since here
we’re making sequence level predictions as opposed to word level pre-
dictions (above), we require a fixed length vector representing the input
sequence. We thus concatenate the encoder’s output corresponding to
the last token in the input sequence, along with a mean pooled and a
max pooled representation of the entire encoded sequence to represent
it. We pass this vector through two feed forward layers with ReLU ()
activations on the first, and a softmax on the latter to generate the
final distribution.

h =
[
hencT , poolavg(h

enc
1:T ), poolmax(h

enc
1:T )
]

(5.4)

ŷtask = fclf (h; θclf ) (5.5)

pmodel(y|x; θ) = softmax(ŷtask) (5.6)
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In practice, we use a two layered classifier with 1200 × 50, and 50 ×
nclasses dimensional weight matrices respectively. We use this module
as a task classifier, as well as a domain regressor in our experiments,
and represent the latter with fdom instead.

• Gradient Reversal Layer: As described in Sec. 4.3.4, DATr requires
the polarity of the gradients to be flipped while backpropagating from
the domain regressor to the encoder. We use a simple parameter-less
identity function for these purposes. During forward propagation, the
gradient reversal layer acts as an identity function. However, during
back-propagation, it multiplies the gradients with −1.

All the models in our experiments are composed of a combination of
these four functions (interchangeably referred to as layer, modules or sub-
networks). Among these, the encoder is of paramount importance, since
throughout our experiments we strive to provide it with an optimum un-
derstanding of the text, and transfer its parameters across different models.
We shall briefly discuss the exact models we use, in the Experimental Setup
subsections of the following experiments.

5.4 Empirical Evaluation of Domain Adver-

sarial Training

As suggested in Sec. 5.1, through this experiment, we wish to find if domain
adversarial setting can benefit the pretrain-finetune procedure. The source
task (on which we pretrain our models) remains the same – language model-
ing over Wikitext103 in all the variations mentioned below. The target task,
is that of binary classification of movie reviews as positive or negative. We
perform the experiment separately for both PL04 and MD11 datasets.

5.4.1 Experimental Setup

Our setup can be characterized by (i) the schedule in which we train and
transfer our models; (ii) the exact architecture and layers of the model; and
(iii) hyperparameters. We begin with a description of the transfer schedules
which we augment and compare within this experiment.

(a) P1 → P2 → P3: Recall the three phased transfer schedule (discussed
in Sec. 3.3). Briefly, it involves the following steps: (i) P1: Pretrain a
encoder-classifier based language model on a domain agnostic corpus;
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Figure 5.1: An illustration of the four learning schemes we use in the first
experiment. Here, the blue colored rectangles (�) denote the generator fgen;
the green ones (�) denote the classifier fclf ; the red ones (�) denote the
domain regressor fdom. The description of each of the four configurations
can be found in Sec. 5.4.1.

(ii) P2: Finetune the pretrained language model on domain specific
corpus – specifically the unlabeled text of the target task; and (iii) P3:
Use the encoder from P2 to initialise a text classification model, and
finetune it on the actual labeled samples from the task.

(b) P1 → P2(D)→ P3: The second phase of the aforementioned schedule
aims to partially bridge the domain shift by training on the unlabeled
samples from the target task. Through DATr, we intend to make this
process smoother. We thus, not only sample word sequences from the
target task (PL04 or MD11), but also from the source task (Wiki-
text103). Further, we adapt the DATr algorithm (Sec. 4.2) to train
the encoder to be invariant to samples from both the source and target
domains. In this setting, the P1 and P3 step remains unchanged.
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(c) P1 → P3: We simplify the first schedule to transfer the language model
trained over domain agnostic text (P1) directly to the target task (P3).

(d) P1 → P3(D): In this variant, we modify the final phase of the P1 → P3

schedule. We add a domain regressor (fdom) along with the task specific
classifier (fclf ) to the model, and feed it inputs from the target dataset
as well as Wikitext103 (the source dataset). We train fdom on samples
from both domains, but train fclf only on samples from the target task.

(e) P3: For the purpose of illustrating the effect of pretraining, we also
incorporate a non-pretrained model in our experiment. In this variant,
we simply initialise the model parameters randomly and train on the
given task.

Figure 5.1 illustrates these transfer schedules, although in an abstract
manner. Given its straightforward nature, we omit visualising the P3 learning
scheme. Further, note that since our encoder architecture is consistent with
that of Howard and Ruder (2018), we use the language model provided by
them for P1

5.

Hyperparameters and other Configurations

The work of (Howard and Ruder, 2018) which proposes the three phased
transfer mechanism also claims that the wide variety of regularisation tech-
niques used by them are beneficial (and in some cases, pivotal) for the per-
formance improvement shown by their tasks. We thus implement them in
our experiments as well, as described below. Note that along with the de-
scription of the technique, we mention the models and the phases (See 5.4.1)
during which they’re used.

Optimiser: We use SGD to optimise our language models (P2), given
that SGD without momentum has been found to outperform most other
optimisation algorithms for the neural language modeling task (Merity et al.,
2018). For P3, we use an Adam (Kingma and Ba, 2015) optimiser, with β1, β2
set as 0.7 and 0.99 respectively as suggested in (Dozat and Manning, 2017).

Variable Length Backpropagation: As pointed out in (Merity et al.,
2018), using truncated BPTT () to train our language models with static se-
quence length ttbptt results in 1/ttbptt

th of the training data to never contribute
to the training. We thus randomly alter sequence length for each mini-batch,
as suggested. This is used only while training the language models, i.e. P2.

Dropouts: We extensively use dropout in our networks, starting with
the embedding layer. The embedding dropout works in two phases wherein

5Available for download at http://files.fast.ai/models/wt103/.
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first we drop entire words from the embedded output with p = 0.014 during
P2, and p = 0.025 during P3. Further, we randomly drop individual weights
from the embedded representations with p = 0.175 during P2, and p = 0.20
during P3.

23864

6150

126151054

MD11

Wikitext103

PL04

173735590

22468

Figure 5.2: A Venn diagram depict-
ing the intersection of vocabulary of
the three datasets we use in our ex-
periments, as discussed in Sec. 5.2

.

Dropouts on the recurrent layer in-
clude a weight dropout of p = 0.14 dur-
ing P2, and p = 0.25 during P3; stan-
dard dropout with p = 0.10, p = 0.15
on activations going from one LSTM
layer to another during P2,P3 respec-
tively. Finally, within the generator
(fgen), we drop elements from the input
with p = 0.07; in classifiers (fclf , fdom)
with p = 0.2, 0.1 (corresponding to each
layer).

Vocabulary: If the words consti-
tuting the vocabulary of a given task
do not appear (frequently) during pre-
training (i.e. Vunk = {wi|wi ∈ Vtask ∩
¬Vwikitext}), the encoder would have lit-
tle to no understanding of them. In
these cases (visualised in Fig. 5.2), we
initialise the embedding vectors corre-
sponding to these unknown words with
a random vector. In practice, the vo-
cabulary of a given dataset is restricted to contain a maximum of 60,000
words, where each word must have appeared at least twice in the dataset.

Learning Rates: Our learning rate schedules are similar to that pro-
posed in (Howard and Ruder, 2018), includes the use of slanted triangular
learning rate (SLTR) (which changes the learning rate across iterations6),
discriminative finetuning (DSCR) (decrease the learning rate by a certain
factor per layer during fine-tuning) during P2. For brevity’s sake, we omit
the descriptions of these schedules, and only mention the hyperparameters
we changed. We set the initial learning rate for both phases at 0.003. We find
that combining domain regressor in the model, along with a 2.6 factor of de-
cay per layer (as a part of DSCR) slows the model convergence substantially.
We thus set it to be 1.3. Further, we find that decaying the learning rate
within each epoch based on the cosine annealing schedule (Loshchilov and

6Here, one iterations refers to one gradient update step. Thus #iterations = #epochs×
#mini-batches per epoch
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Hutter, 2017), with one cycle per epoch is beneficial across multiple model
and transfer schedules, and is thus incorporated.

Freezing Schedule: Freezing schedules aim to make certain parts of a
model non-trainable for a particular time during the training, typically to
avoid overfitting or catastrophic forgetting. At the start of P2, we freeze the
encoder and train only the generator for one epoch, after which we proceed
as normal (with DSCR scaled learning rate per layer). During P3, we instead
freeze the entire model, and unfreeze a layer per epoch starting from the top
(final layer of the classifier).

Loss Functions: We use weighted cross entropy for both Ltask, and Ldom.
While the classes of the target task are balanced in our experiments, the
samples used for calculating Ldom vary, and thus are appropriately weighted
within the loss function.

Domain Regressor Ratio (λ): The scaling factor used in Eqn. 4.7 is
used to tune the trade-off between Ltask and Ldom, as discussed in Sec. 4.3.4.
We find that setting λ = 6 leads to a consistent performance improvement on
the target task across multiple settings, and thus keep it unchanged through
all our experiments. Further, we discuss the impact of different values of λ
in Sec. 5.4.3.

Remark. The hyperparameter values were not decided through an exhaus-
tive grid search, due to practical limitations. However, we find that the
models were very sensitive towards the initial learning rate, which when set
at the initial value of 0.003 demonstrated the most consistent performance
across multiple phases, and multiple models.

The dataset splits and model configurations mentioned in Sec. 5.2, 5.3 remain
unchanged and hence aren’t repeated here.

5.4.2 Results

Through our experiments, we find that pretraining our models as a language
model over Wikitext is beneficial, across both the datasets. Further, despite
different learning schemes leading to different results, the accuracies over the
final task lie in the narrow margin between 92.53% to 93.44% over MD11,
and 87.50% to 90.76% over PL04 (excluding the non-pretrained variant). The
results on the latter vary more, which is understandable given the difference
in the sizes of training data between the two. We report the results of this
experiment in Table 5.1.

Surprisingly, we find that the simplest P1 → P3 transfer technique out-
performs the three phased setting, both with and without domain adversar-
ial training. We attribute this discrepancy with results from (Howard and
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Scheme MD11 PL04

TASK DOMP2 DOMP3 TASK DOMP2 DOMP3

P1 → P2 −−−−→ P3 92.65 NA NA 87.50 NA NA
P1 → P2(D)→ P3 92.53 51.90 NA 88.75 86.74 NA
P1 −−−−−−→ P3 93.44 NA NA 89.00 NA NA
P1 −−−→ P3(D) 93.31 NA 55.42 90.76 NA 62.69

P3 89.39 NA NA 81.60 NA NA

Table 5.1: Performance of different transfer learning schedules over the
MD11 (Maas et al., 2011), and PL04 (Pang and Lee, 2004) sentiment classi-
fication tasks. Here, TASK refer to accuracy (denoted in percentage points)
of the model when predicting the target label. DOMP2 and DOMP3 refer
the model’s accuracy when predicting the source of the input (domain label)
during second and third phase of training respectively.

Ruder, 2018) to the change in hyperparameters including initial learning rate
and a slightly changed freezing schedule. As mentioned above, we changed
these hyperparameters when doing so was beneficial across multiple models
and transfer settings, thereby deviating from those used by (Howard and
Ruder, 2018) which were decided through a much more focused search for
their transfer learning scheme.

Further, when focusing on the results of one dataset (MD11, PL04) at
a time, we find that the DATr affects the performance differently in both
cases. On PL04, it has tangible benefits (+1.25%, +1.76%) when compared
to models trained without it. Consider that PL04 has only 1600 samples to
train on. Given this, and the fact that pretrained models tend to converge
very quickly (discussed in Sec. 5.4.3), the results suggest that DATr can offset
the tendency to overfit on small datasets, effectively regularising the model.
On MD11, DATr does not improve the task accuracy, and is in fact, slightly
detrimental (-0.12%, -0.13% respectively). Given that MD11 has 25 times
more data to train on, the above result suggests that the increased training
data itself regularises the model, rendering the effect of DATr redundant
(and hence, detrimental). The redundancy is also evident given the minute
difference in accuracies between (a), (b), and (c), (d) pairs.

To conclude, we find that it is easier to classify representations which
contain features specific to the target task. However, regulating this speci-
ficity (by learning domain invariant representations) prevents the model from
overfitting, in low resource scenarios (See discussion regarding generalisation
gap below). Further, that domain adversarial training is an effective means
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Figure 5.3: Plots demonstrating the decrease in model loss w.r.t. epochs.

of regulating this specificity, but this augmentation makes the model suscep-
tible to overpowering the domain invariance, and thus can be detrimental to
model performance.

5.4.3 Further Analysis

In this section, we take a more focused look on the results above, aiming for
a better understanding of the effect of DATr.

Model Convergence: We begin the discussion by talking about the
convergence of our models under different training schemes. Fig 5.3a, and
Fig. 5.3b visualise Ltask (loss on the target task) w.r.t. epochs. Here, by
convergence, we mean that the parameters reach a local minima in the loss
surface, where their training accuracy reaches near 100, and loss decreases
substantially, as is further hinted by small gradient steps around these itera-
tions. We make the following observations through the loss plots, across both
the datasets: (i) pretraining the models lead to a significantly faster conver-
gence, and that (ii) the three-phased transfer learning further decreases the
convergence time.

Amongst the pretrained models, while the three-phased schedules con-
verge faster, their performance lags slightly behind the two-phased sched-
ules. This suggests that the former converges to a suboptimal minima w.r.t
the latter. We call this convergence sub-optimal since the models exhibit a
higher generalisation error (or error computed over test data), as well as a
higher generalisation gap (the difference between accuracy over the training
and test set) (See Table 5.2).

Effect of Domain Regressor Ratio (λ): In our main experiment, we
arrived at a value of 6 for λ based on careful considerations of the trade-off
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Scheme MD11 PL04

Train Test DOMP3 Train Test DOMP3

P1 → P3 96.27 93.44 NA 97.13 89.00 NA
P1 → P3(D3) 97.94 92.59 55.92 92.76 89.66 92.35
P1 → P3(D6) 95.90 93.31 55.42 92.49 90.76 62.69
P1 → P3(D12) 95.65 93.32 55.41 89.63 88.04 62.23

Table 5.2: Effect of different values of λ for the two-phased transfer scheme.
For each row, the value of lambda is denoted by the suffix of (D). Here,
Train, Test, and DOMP3 refer to the task accuracy over train set, test set,
and the domain classification accuracy over the test set respectively. Finally,
note that the first and third row of the table correspond to experiments
already mentioned in Table 5.1. We repeat them here for completion’s sake.

between domain classification accuracy and task accuracy. In this experi-
ment, we intend to illustrate the effect of this choice. Thus, we repeat the
aforementioned experiment for different values of λ including 3, 6 and 12. To
retain the focus of this experiment, we only perform it for the two phased
learning schemes (scheme (c) & (d)). We report its results in Table 5.2.

Through the results, it is evident that DATr has little to no effect on
the performance over MD11, regardless of the value of λ, but does affect the
performance over PL04 (the smaller dataset). This strengthens the evidence
that ample training data can itself regularise the model and prevents the
model from overfitting. Focusing on the performance over PL04, we find
that λ = 6 provides substantial performance improvements, λ = 12 over-
powers the regularisation whereas a value of 3 has less effects on the domain
invariance, as evident by DOMP3 = 92.35%. Thus, given its consistent per-
formance across the task we choose λ = 6 for the main experiment. However,
we recommend interested readers to experiment with different values when
using DATr in a different setting.

Further, a higher value of λ consistently decreases the generalisation gap
(difference between accuracy on training data and accuracy on test data),
some cases at the expense of increasing the empirical error.
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Figure 5.4: An illustration of the five learning schemes we use in the second
experiment. Similar to Fig. 5.1, the blue colored rectangles (�) denote the
generator fgen; the green ones (�) denote the classifier fclf ; the red ones
(�) denote the domain regressor fdom. The description of each of the four
configurations can be found in Sec. 5.5.1.
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5.5 Experiment: Domain Adversarial Train-

ing in a Multi-task Setting

As discussed in Sec. 5.1, domain adversarial training in a multitask scenario
tilts the models towards not overloading a shared latent space with features
corresponding to multiple domains/tasks. Instead, it incentivizes the use of
domain invariant features for the purposes of solving the target tasks.

In this experiment, we attempt to find the extent to which DATr enforces
this, and its corresponding effect on the model performance.

5.5.1 Experimental Setup

While we do not include the task index in the input representations, we
provide the model with it for the following purposes: Given a multi-task
scenario with N tasks, we train our models with N different classifiers fnclf
and pass the encoded input representation to the classifier corresponding to
its class. Doing so enables us to discount confusions caused by the task shift
as a possible reason for generalisation errors.

The variations in transfer schemes (two and three phased), along with
possible variations of multi-task classification increases the number of sched-
ules we evaluate in this experiment. In all cases, however we use MD11 and
PL04 as our target task, and define a hybrid task Ta,b representing the two
together. We illustrate these models in Fig. 5.4, and provide their description
below:

(a) P1 → P3(M ): In the simplest setting, we take the pretrained language
model’s encoder to initialise the task specific model. Further, as de-
noted by the (M ) suffix, we solve T clf

a,b here, which is to say that we
sample inputs x ∼ XMD11∪XPL04, and ask the model to predict a label
from YMD11 or YPL04 depending upon the task index. Correspondingly,
we initialise two task-specific classifiers fMD11

enc , and fPL04enc both of which
use the shared encoder’s outputs as their input to make the prediction.

(b) P1 → P3(M ) (D): We augment the setting above by adding a domain
regressor fdom along with the two existing classifiers and train the entire
model based on the domain adversarial training Algorithm.

(c) P1 → P2(M ) → P3(M): In this baseline three phased scheme, we
augment the phase two to solve T lma,b . Akin to the first configuration, we
use two different generators fMD11

gen and fPL04gen which are used to predict
the next word indicated by the task vector sampled along with inputs
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Scheme MD11 PL04 DOMP2 DOMP3

P1 → P3(M) 93.04 93.66 NA NA
P1 → P3(M) (D) 92.46 91.05 NA 93.98
P1 → P2(M)→ P3(M) 91.83 93.56 NA NA
P1 → P2(M) (D)→ P3(M) 92.85 94.25 54.46 NA
P1 → P2(M ) (D)→ P3(M) (D) 92.64 92.87 54.46 93.89

Table 5.3: Performance of different transfer learning schedules when solving
MD11 and PL04 together in a multi-task setting.

x ∼ XMD11 ∪XPL04. After fine-tuning the language model encoder on
target text in this manner, we transfer it to the task specific model
which follows the same setup as (a).

(d) P1 → P2(M ) (D) → P3(M): Same as above but with a domain
regressor trained along with the language model using DATr. Under
this scenario, we use DATr to impart a degree of domain invariance to
the language model, but do not reinforce it during the actual task.

(e) P1 → P2(M) (D) → P3(M ) (D): Finally, we augment the third
phase with domain adversarial training effectively trying to maintain
the invariance across both fine-tuning phases.

Hyper-parameters and other configurations

We keep this unchanged from the first experiment (See Sec. 5.4.1) except for
the follows:

Vocabulary: When solving two target tasks (MD11, PL04) at a time, it
is pivotal to have the maximum vocabulary overlap between the two. How-
ever if we let our vocabulary constitute of all the words across both the
datasets, we risk suffering from data sparsity and a corresponding perfor-
mance loss. Thus, we take the most frequent 60, 000 words from MD11,
and add another 2, 000 most frequent words from PL04 which aren’t already
included, and therefore have a maximum of 62, 000 words in our vocabulary.

5.5.2 Results

Table 5.3 lists the results of this experiment. We see that the simplest scheme,
namely (a) has the best performance over MD11, whereas (d) has the highest
accuracy over PL04. Overall, the performance of all the variations lie within
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a narrow range of 91.83% and 93.04% on MD11, and 91.05% and 94.25%
over PL04.

Upon comparing these results to that of the first experiment (see Sec. 5.4.2),
we notice that the performance of these models over PL04 increases substan-
tially, even in the absence of domain adversarial training (93.66%, 93.56%
for (a) and (c) respectively; whereas the best performing approach in the
first experiment had an accuracy of 90.76%). This suggests that training the
encoder on MD11 (along with PL04) imparts an understanding of the inputs
which is beneficial for the latter.

Further, we notice that adding domain regressor as an auxiliary task
during P3 negatively affects the performance over PL04 (-2.61% between (b)
& (a), -1.38% between (e) & (d)). Taking this into account, along with
the above suggests that the models derive value from domain specificity and
trying to curb it results in a performance loss. This is further reinforced
upon observing the actual value of the domain regressor in the third phase.
Comparing the DOMP3 values between Table. 5.3 and Table. 5.1, we find that
enforcing domain invariance is more ineffective in the multi-task setting.

Thus, to conclude, this experiment suggests that domain invariance in
a multi-task setting provides no tangible benefits7. We restrict our findings
to when trying to perform binary classification of movie reviews across two
different datasets, and leave the investigation of DATr on multi class classi-
fication, and more complex tasks for future investigations.

7While scheme (d) outperforms the others over PL04, it doesn’t over MD11. Consider-
ing that MD11’s test set has 25,000 samples whereas PL04’s has only 400, we assign more
prominence to models which exhibit better performance over MD11.
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Chapter 6

Conclusions and Future Work

In this thesis, we investigated whether enforcing domain invariance can im-
prove the performance of recurrent neural models on common NLP tasks.
Specifically, we ask if it can bridge the domain gap incurred when transfer-
ring pretrained language models for the purposes of finetuning over a target
task. To that end, we use the domain adversarial training algorithm, pro-
posed in (Ganin et al., 2016) while finetuning the models, and experiment
with this augmentation in a variety of schemes. For our experiments, we pre-
train a language model on Wikitext103 (Merity et al., 2017), and finetune its
encoder, for the purposes of classifying movie reviews. We use two datasets
for the latter namely, MD11 (Maas et al., 2011), and PL04 (Pang and Lee,
2004).

Through our experiments, we find that enforcing domain invariance reg-
ularises the model, and decreases the generalisation gap. Thus, in low re-
source settings, i.e. target tasks with insufficient labeled examples, domain
adversarial training can benefit model performance. However, this form of
regularisation is detrimental in cases where ample training data is available.
Further, we find that in a multi-task scenario, i.e. when we train our model to
perform classification on both the target tasks simultaneously, an increased
number of labeled examples renders the use of domain adversarial training
ineffective.

6.1 Future Work

In the future, we are interested in repeating our experiments with a wider
set of NLP tasks for a more comprehensive understanding of the effects of
domain invariant representations. We intend to investigate the effects of
domain adversarial training in a multi-task setting involving pairs of tasks
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with different complexity and abstraction. Further, we want to explore the
use of other auxiliary tasks such as sequence recreation (Rei, 2017), and low
level NLP tasks (Niehues and Cho, 2017) along with our augmentations.

Given that the generalisation gap of deep learning models changes during
the training process, we would like to experiment with changing the value
of λ mid-training, preferably in a dynamic manner. Along similar lines, we
would want to explore the use of changes in the training schedule by the
means of interleaving mini-batches from across the domains, as opposed to
interleaving individual samples within the mini-batches.

Recently, several works (Glockner et al., 2018; Carmona et al., 2018) focus
on an active investigation of robustness of NLP models to out-of-distribution
data, and noisy data. We intend to undertake similar investigations in the
context of our domain adversarially trained models, premised on the fact
that domain invariance prevents models from picking up idiosyncrasies of a
particular dataset, enabling generalisation to a wider extent. To that end,
we will incorporate experiments suggested in the aforementioned works, as
well as adversarially generated examples, following the techniques proposed
in (Jia and Liang, 2017; Lei et al., 2018).
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